最近公共祖先
为了一般化, 把一个点本身也称为它的祖先.(将当前点往根节点走, 路过的点全部称为祖先)
当然祖先有可能是红色和绿色点中的某一个点, 当然有可能两点是重叠的.
向上标记法
从一个点开始向上遍历, 在遍历的过程中, 将它路过点的点都标记一下, 比方说搞个bool
数组, 路过的全部标记成1.
标记完后, 从另外一个点开始往上走, 当另外一个点第1次走到标记的点的时候, 那么当前点就是最近的公共祖先
O(n): 最坏情况下一条链, 每次走到根节点
倍增法
先预处理下, 每个点向上走
2
k
2^k
2k步的父亲是谁
fa[i, j] 表示从i开始, 向上走2^j步所能走到的节点, 0 <= j <= log n (暂时不明白为什么是
⌊
log
n
⌋
\lfloor \log n\rfloor
⌊logn⌋)
⌊ log n ⌋ \lfloor \log n\rfloor ⌊logn⌋ 因为0表示0辈祖先, 即父节点, 1表示2^1辈祖先, 即爷爷节点, 因此 ⌊ log n ⌋ \lfloor \log n\rfloor ⌊logn⌋相当于 当前祖先链上, 往上走了n步, 可以走到超过根节点的情况
j = 0, f[i, j] = i的父亲节点
j > 0的时候, 如果要跳2^j步, 可以通过j -1递推求, f[i, j] = f[f[i, j - 1], j - 1](先从i跳
2
j
−
1
2^{j - 1}
2j−1步, f[i, j - 1], 然后在此基础上再跳
2
j
−
1
2^{j - 1}
2j−1, f[f[i, j -1], j - 1]) (yxc:既可以用bfs, 也可以用dfs来求)
depth[i] : 表示深度: 规定根节点的深度为1, 第2层的深度为2, 第3层的距离为3. 其实也可发现, 深度就是到根节点的距离+ 1, 也是可以用DFS/ BFS来求
可以利用这两个数组来求LCA
步骤:
[1] 先将两个点跳到同一层(怎么做呢)
[2] 让两个点同时往上跳, 一直跳到他们的最近公共祖先的下一层
为什么跳到下一层呢? 因为这样好判断, f[a][k] = f[b][k]只能说明f[a][k] 和f[b][k]是a和b的公共祖先, 但不知道是不是最近的, 但是f[a][k] != f[b][k] 说明我们没有走到最近公共祖先上, 因此只能跳下一层, 用拼凑的思想, 直到k枚举完0为止, 枚举完f[a][k] 应该走到最近公共祖先的下一层, 那么f[x][0] 就是答案
[1] 基于2进制拼凑的思想,
已经有了 2 0 , 2 1 , 2 2 , . . . 2 k 2^0, 2^1, 2^2, ... 2^k 20,21,22,...2k 然后去拼凑t, 只要 t ≥ 2 k t \geq 2^k t≥2k, 那么说明第k位是1, 然后 t = t − 2 k t = t -2^k t=t−2k, 继续看接着拼凑
具体在树上, 先看x, y差了多少层, 差depth[x] - depth[y]
之前已经出来出来 f[i, j]中j所有可以跳的2^k步, 2^0, 2^1 …,
然后现在是想用2^0, 2^1 …,拼凑出来depth[x] - depth[y], 比方说我现在跳2^k还没有跳到y的上面的话, 那就可以继续跳, 以此类推, 从大到小推一遍, 用2^0, 2^1 …,拼凑出来depth[x] - depth[y]
1172. 祖孙询问
分析
先把树先构造出来, 然后把数预处理下, 预处理完后, 对于每个查询, 做步骤中的两部, 倍增找到最近公共祖先, 找完之后判断x与y的祖孙关系
时间复杂度O( (n + m)logn))
code
#include <iostream>
#include <cstring>
using namespace std;
const int N = 40010, M = N * 2;
int n, m;
int h[N], e[M], ne[M], idx;
int depth[N], fa[N][16]; // 2^15 = 32768
int q[N];
void add(int a, int b){
e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
void bfs(int root){
memset(depth, 0x3f, sizeof depth);
// 哨兵0
depth[0] = 0, depth[root] = 1;
int hh = 0, tt = 0;
q[0] = root;
while (hh <= tt){
int t = q[hh ++ ];
for (int i = h[t]; ~i; i = ne[i]){
int j = e[i];
if (depth[j] > depth[t] + 1){
depth[j] = depth[t] + 1;
q[ ++ tt] = j;
fa[j][0] = t;
for (int k = 1; k <= 15; k ++ )
fa[j][k] = fa[fa[j][k - 1]][k - 1];
}
}
}
}
int lca(int a, int b){
if (depth[a] < depth[b]) swap(a, b);
for (int k = 15; k >= 0; k -- )
if (depth[fa[a][k]] >= depth[b]) // 2进制拼凑, 哨兵的好处, 如果跳出了根节点的话, 那么depth[fa[a][k]] == 0, 但右边树中任何一个点深度 > 0, 所以if条件肯定不成立.
a = fa[a][k];
if (a == b) return a;
for (int k = 15; k >= 0; k -- ) // 一起往上跳, 从可以跳到最远的为位置起跳
// 类似2进制拼凑的思想, 当不相等, 就继续跳, 凑出最近的不相等的位置k
if (fa[a][k] != fa[b][k]){ // 哨兵的好处, a与b此时在同一层, a跳出去, 那么b也跳出了, 不会进入if
a = fa[a][k];
b = fa[b][k];
}
return fa[a][0];
}
int main(){
scanf("%d", &n);
int root = 0;
memset(h, -1, sizeof h);
for (int i = 0; i < n; i ++ ){
int a, b;
scanf("%d%d", &a, &b);
if (b == -1) root = a;
else add(a, b), add(b, a);
}
bfs(root);// bfs计算depth 以及f数组, 记得要添加哨兵depth[0] = 0;
scanf("%d", &m);
while (m -- ){
int a, b;
scanf("%d%d", &a, &b);
int p = lca(a, b);
if (p == a) puts("1");
else if (p == b) puts("2");
else puts("0");
}
return 0;
}
在线做法
每读入一个询问, 立即输出答案, 再读入一个询问, 再输出
离线做法
必须先把所有询问统一读入, 统一计算完后, 统一输出
Tarjan—离线求LCA O(n + m)
在深度优先遍历的过程中, 将所有点分成3大类
- 已经遍历过的点, 且回溯过的点 (回溯过指dfs函数已经结束了)(绿色圈出来的点)
- 正在搜索的分支, 当前在递归栈中的点(红色边上的点)
- 还未搜索到的点(右边的点)
比方说问x与绿色圈出来中的点的最近公共祖先, 可以合并到它的根节点当中.
如下图示意:
合并的话可以用并查集来做
遍历完当前x点之后, 可以扫描与x相关的询问, 如果与x相关的点已经被搜索且回溯过了, 那么得到这两个点的lca就是并查集中的代表元素
这样做的话, 发现每个点只会被遍历1次, 所有点只会被合并1次, 然后对于每个查询, 也只会被查询1次, 由于并查集合并和查询是O(1)的, 因此真个算法时间复杂度是线性的O(n + m)
1171. 距离
分析
在树上求两个点的长度, 连接树上两点只有1条路径.
d(x): x到根节点的距离
d(y): y到根节点的距离
p: x与y的最近公共祖先
因为d§被计算了两次, 剪掉就是两点的距离
因此, 此题的核心操作, 就是询问两个点的最近公共祖先是谁
code
#include <iostream>
#include <cstring>
#include <vector>
using namespace std;
typedef pair<int, int> PII;
const int N = 10010, M = N * 2;
int n, m;
int h[N], e[M], w[M], ne[M], idx;
int dist[N];
int p[N];
int res[M];
int st[N];
vector<PII> query[N]; // first存查询的另外一个点, second存查询编号
void add(int a, int b, int c){
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}
void dfs(int u, int fa){
for (int i = h[u]; ~i; i = ne[i]){
int j = e[i];
if (j == fa) continue;
dist[j] = dist[u] + w[i];
dfs(j, u);
}
}
int find(int x){
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int tarjan(int u){
st[u] = 1;
for (int i = h[u]; ~i; i = ne[i]){// 遍历下和u相关的邻点, 递归tarjan
int j = e[i];
if (!st[j]){// 只有在右边没搜素的点才可以纳入搜索的范围
tarjan(j);
p[j] = u;// 遍历完后已经是绿色点, 合并到根节点u
}
}
for (auto item : query[u]){
int y = item.first, id = item.second;
if (st[y] == 2){// 只有st[y]已经被标记成2才可以搜lca
int anc = find(y);
res[id] = dist[u] + dist[y] - dist[anc] * 2;
}
}
st[u] = 2;// 当前u已经递归完成, 标记为2类点
}
int main(){
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
for (int i = 0; i < n - 1; i ++ ){
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c), add(b, a, c);
}
for (int i = 0; i < m; i ++ ){
int a, b;
scanf("%d%d", &a, &b);
if (a != b){
query[a].push_back({b, i});
query[b].push_back({a, i});
}
}
for (int i = 1; i <= n; i ++ ) p[i] = i;
dfs(1, -1); // 递归求下每个节点到根节点的距离
tarjan(1);
for (int i = 0; i < m; i ++ ) printf("%d\n", res[i]);
return 0;
}
RMQ(区间求最值)
后面会讲
不是很常用, 比tarjan和倍增都要麻烦
356. 次小生成树
分析
- 根据存在次小生成树与最小生成树只差一条边。
- 我们可以先通过kruskal求出最小生成树 O(mlogm)
- 通过这个树初始化某点到其他点的路径中最大边、次大边。 O(n2)
- 遍历所有未在树中的边(u–>v), 看是否大于u到v的边的最大值, 若大于那么可以替换这条边,若不大于那就再判断是否大于次值,若大于同理进行替换。
- 由于这里的n过于大, 那么n2 的O(mlogm + n2) 的复杂度就不行。 那么考虑优化一下查找u—>v的路径的最大值。可以通过lca进行优化。
- 根据f[x][k] = f[f[x][k-1]][k-1]的递推。 我们可以类似求出d[x][k] = max(d[x][k - 1], d[f[x][k-1]][k - 1])
- 查询的时候我们是查询x–>y中路径的最大值、次大值。 那么可以在lca的查询中。查询x->lca那一段中的所有最大、次大,y到lca中所有的最大、次大, 最后从这些最大、次大里面选出最大、次大值即可。
联动题
- 秘密的牛奶运输
code
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100010, M = 300010, INF = 0x3f3f3f3f;
typedef long long LL;
int h[N], e[M], w[M], ne[M], idx;
int q[N], depth[N];
int fa[N][17], d1[N][17], d2[N][17];
int n, m;
int p[N];
struct Edge{
int a, b, w;
bool used;
bool operator< (const Edge &t){
return w < t.w;
}
}edge[M];
void add(int a, int b, int c){
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}
int find(int x){
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
LL kruskal(){
for (int i = 1; i <= n; i ++ ) p[i] = i;
LL res = 0;
sort(edge, edge + m);
for (int i = 0; i < m; i ++ ){
int a = find(edge[i].a), b = find(edge[i].b), w = edge[i].w;
if (a != b){
res += w;
edge[i].used = 1;
p[a] = b;
}
}
return res;
}
void build(){// 建立最小生成树
memset(h, -1, sizeof h);
for (int i = 0; i < m; i ++ ){
if (edge[i].used){
int a = edge[i].a, b = edge[i].b, w = edge[i].w;
add(a, b, w), add(b, a, w);
}
}
}
void bfs(){
memset(depth, 0x3f, sizeof depth);
int hh = 0, tt = 0;
depth[0] = 0, depth[1] = 1;
q[0] = 1;
while (hh <= tt){
int t = q[hh ++ ];
for (int i = h[t]; ~i; i = ne[i]){
int j = e[i];
if (depth[j] > depth[t] + 1){
depth[j] = depth[t] + 1;
q[++ tt] = j;
fa[j][0] = t;
d1[j][0] = w[i], d2[j][0] = -INF;
for (int k = 1; k <= 16; k ++ ){
int anc = fa[j][k - 1];
fa[j][k] = fa[anc][k - 1];
int distance[4] = {d1[j][k - 1], d2[j][k - 1], d1[anc][k - 1], d2[anc][k - 1]};
d1[j][k] = d2[j][k] = -INF;
for (int u = 0; u < 4; u ++ ){
int d = distance[u];
if (d > d1[j][k]) d2[j][k] = d1[j][k], d1[j][k] = d;
else if (d != d1[j][k] && d > d2[j][k]) d2[j][k] = d;
}
}
}
}
}
}
int lca(int a, int b, int w){
static int distance[N * 2];
int cnt = 0;
if (depth[a] < depth[b]) swap(a, b);
for (int k = 16; k >= 0; k -- ) // a往上跳, 往上条前, 记录距离
if (depth[fa[a][k]] >= depth[b]){
distance[cnt ++] = d1[a][k];
distance[cnt ++] = d2[a][k];
a = fa[a][k];
}
if (a != b)
{ // a, b同时往上条, 也记录距离
for (int k = 16; k >= 0; k -- )
if (fa[a][k] != fa[b][k])
{
distance[cnt ++ ] = d1[a][k];
distance[cnt ++ ] = d2[a][k];
distance[cnt ++ ] = d1[b][k];
distance[cnt ++ ] = d2[b][k];
a = fa[a][k], b = fa[b][k];
}
distance[cnt ++ ] = d1[a][0];// 到lca只有1条边了, 因此只用添加当前的最大边
distance[cnt ++ ] = d1[b][0];
}
int dist1 = -INF, dist2 = -INF;
for (int i = 0; i < cnt; i ++ )
{
int d = distance[i];
if (d > dist1) dist2 = dist1, dist1 = d;
else if (d != dist1 && d > dist2) dist2 = d;
}
if (w > dist1) return w - dist1;
if (w > dist2) return w - dist2;
return INF;
}
int main(){
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i ++ ){
int a, b, w;
scanf("%d%d%d", &a, &b, &w);
edge[i] = {a, b, w};
}
LL sum = kruskal();
build();
bfs(); // 不熟悉
LL res = 1e18;
for (int i = 0; i < m; i ++ ){
int a = edge[i].a, b = edge[i].b, w = edge[i].w;
res = min(res, sum + lca(a, b, w)); // lca函数不熟悉
}
printf("%lld\n", res);
return 0;
}
352. 闇の連鎖
分析
Dark 有N-1条边, 并且任意两个节点之间都存在一条由主要边构成的路径->告诉我们是一棵树
只能砍2次, 第1次只能看树边, 第2次只能砍非树边, 问有多少种方案能使得图不连通
如果只是一棵树的话, 任意去掉树边, 就可以变得不连通.
但是有非树边的话, 除了砍掉非树边(红色), 还要砍下 非树边连接的两点之间的树边(绿色)
如果再有一条非树边, 那么要需要砍
对于非树边构成的环上的每条树边来说, 如果要砍树边, 要使得图不连通的话, 还要砍对应的非树边
因此可以枚举非树边(红边), 将非树边构成的环上的树边(绿边)都 +1, 表示砍了非树边(红边)之后, 还想要图不连通的话, 还需要多砍1条边
在枚举完非树边(红边)之后, 再遍历下原来的树, 看下每条边上标的数字是几, 表示砍完非树边以后, 还需要额外砍几条树边
假如当前树边值为c = 0, 那么可以砍任何一条非树边都可以使得图不连通, 因此ans + m
c = 1, 表示砍了这条树边, 还需要砍1条非树边, 因此必须砍非树边, 只有1种方案, ans + 1
c > 1, 表示砍了这条树边, 还需要砍c条非树边, 但是只能砍1条, 因此无论如何都不能使得图不连通, 因此答案+0
核心问题:
如何快速的给树上的每一条边增加一个数, 以及快速的求出来每条边上的值是多少
类似基础课中的差分, 差分可以快速O(1)的给某一段+相同值, 然后用O(n)求出每个数是多少
最终每个值就是差分的前缀和
树上的差分
假设想给x到y的路径上每条边+c
x, y, c
d(x) += c
d(y) += c
d§ -= 2c
最终每个点的值是以这个点为根的子树里的所有点的和, 就表示这个点和它父节点之间边上的值
举个例子:
对于子树外的任何一部个部分, +2c, -2c没有任何变化
(因为子树外的任何边的目的地作为更节点构成的子树, 一定包含p, x, y, 因此必定+c, +c , -2c)
对于树内的影响, 角落内红色的子树, 不影响, 因为那些子树上不包含x, y, p
因此只对图中红色边有影响
所以以上等式, 只对x, y路径上的边权+c
题目再分析
回到原问题, 先求下非树边x, y的最近公共祖先p, 然后让d(x) += c, d(y) += c, d§ -=2c, 然后遍历下整棵树, 求下每颗子树的总权值之和是多少
对于所有权值之和为0的, +m
1的, +1
> 1的, 不用管
注意下, 根节点是没有对应任何一条非树边的, 所以根节点不用管
因为根节点的两条边都是树边啊啊~~~
code
#include <iostream>
#include <cstring>
using namespace std;
const int N = 100010, M = N * 2;
int n, m;
int h[N], e[M], ne[M], idx;
int depth[N], fa[N][17];
int d[N];// 树上点的值
int q[N];
int ans;
void add(int a, int b){
e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
void bfs(){
memset(depth, 0x3f, sizeof depth);
int hh = 0, tt = 0;
depth[0] = 0, depth[1] = 1;
q[0] = 1;
while (hh <= tt){
int t = q[hh ++ ];
for (int i = h[t]; ~i; i = ne[i]){
int j = e[i];
if (depth[j] > depth[t] + 1){
depth[j] = depth[t] + 1;
q[++ tt] = j;
fa[j][0] = t;
for (int k = 1; k <= 16; k ++ ){
fa[j][k] = fa[fa[j][k - 1]][k - 1];
}
}
}
}
}
int lca(int a, int b){
if (depth[a] < depth[b]) swap(a, b);
for (int k = 16; k >= 0; k -- )
if (depth[fa[a][k]] >= depth[b]) // >= , 而不是>
a = fa[a][k];
if (a == b) return a;
for (int k = 16; k >= 0; k -- )
if (fa[a][k] != fa[b][k])
a = fa[a][k], b = fa[b][k];
return fa[a][0];
}
int dfs(int u, int father){ // 返回以u为根节点的所有子树上边权值之和
int res = d[u];
for (int i = h[u]; ~i; i = ne[i]){
int j = e[i];
if (j != father) {
int s = dfs(j, u);
if (s == 0) ans += m;
else if (s == 1) ans += 1;
res += s;
}
}
return res;
}
int main(){
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
for (int i = 0; i < n - 1; i ++ ){
int a, b;
scanf("%d%d", &a, &b);
add(a, b), add(b, a);
}
bfs(); // 做lca前的预备, depth计算 fa计算
for (int i = 0; i < m; i ++ ){ // 不能while (m -- ), 因为dfs中还要用到m
int a, b;
scanf("%d%d", &a, &b);
int p = lca(a, b);
d[a] ++, d[b] ++ , d[p] -= 2; // 差分
}
// exit(0);
dfs(1, -1);
printf("%d\n", ans);
return 0;
}