凌桑的自我修养--You are the Eternity

大其愿,坚其志,虚其心,柔其气

模式识别(Pattern Recognition)学习笔记(十八)--感知器与神经网络

1.什么是人工神经网络(ANN)?

1.1ANN的由来

       在人工智能中,有两个研究方向:1)先试图对人类或其他高等动物的自然智能建立一定的数学模型,然后借助这种方式来帮助理解智能活动的奥秘;2)通过数学手段,利用计算机建立具备一定智能的机器。回顾下前面学习的贝叶斯决策和线性的非线性的判别方法,可以发现,它们显然对应于第二种研究方向,都是直接从数学的角度来分析数据的分布,建立线性的或非线性的判别函数,而并非直接与自然智能相联系。

       早在上世纪中,人们就开始了神经系统的研究,自上世纪80年代以来,人们开始大量的借用神经生理学的概念来研究人工智能,于是这时就诞生出了“人工神经网络”这门新兴学科,它的到来为模式识别方法的研究体系注入了新鲜的血液,人工神经网络(Artificial Neural Network),简称神经网络。

       神经网络的两大用法:1)分类器:学习机;2)作原系统的等效模型系统,主要用在智能控制上。

1.2ANN的基本思想

       借鉴于人或动物自然神经系统的构造和机理,神经系统由大量神经元构成,结构复杂,外加上人们再对这一网络建立一定的算法和数学模型,然后让它能够实现基于数据的模式识别、函数映射等智能化功能,这样的网络我们称之为人工神经网络。

      不同的数学模型可以得到不同的神经网络方法,而本篇学习的多层感知器(明显的跟前面学习的感知器有关,需要的可以回头查看复习)是其中最具影响力的一种模型,它能够从训练样本中学习任意复杂度的非线性映射的能力,而且可以实现复杂的非线性判别函数,因此,从模式识别的角度来看,它可以看作是一种通用的非线性分类器设计方法。

2.什么是神经元?

       神经元作为神经系统的基本组成单位,又叫神经细胞,一个典型的神经元由以下几部分组成:


       其中,细胞体是神经元的主体,主要负责信息加工;树突是细胞体外围的大量微小分支,可达10^3个数量级,主要作用是从外界接收信息;轴突作为神经元的输出,将输出传递给其他神经元;突触是一个神经元与另一个神经元的树突“连接”(注意,并非物理意义上的连接)的部位,它的状态影响着信号传递的效率。

       在一个神经系统中,往往有大量大量的神经元,人类的神经系统中各种神经元的总数可以达到10^10-10^11个,神经元之间通过突触连接,就构成了复杂的神经网络系统。

2.感知器神经元

       下面来看一个神经元是如何工作的:

        这是一个简化了的模型,作为ANN的基础,实际中神经元的活动要复杂的多,用公式表示:

            (1)

其中,x是神经元的输入,w是神经元的权重,是单位阶跃函数(0或1),作为神经元的传递函数,也可以用符号函数(1或-1);

       几何角度上来看,感知器神经元就是用超平面(公式如下)将特征空间划分成两个区域:y=1和y=0(或-1)


       另外,如果将神经元的两个可能的结果当做两个类别的话,公式(1)所描述的传递函数其实就是一个线性分类器,而公式(1)就叫做感知器判别函数,有关该判别函数的求解,同样可以利用梯度下降迭代的方法,对权值进行迭代训练以修正。


阅读更多
版权声明:本文为博主原创文章,转载请注明出处:http://blog.csdn.net/eternity1118_。 https://blog.csdn.net/eternity1118_/article/details/51580355
所属专栏: 模式识别与机器学习
想对作者说点什么? 我来说一句

神经网络模式识别及其实现.pdf

2008年06月04日 6.24MB 下载

没有更多推荐了,返回首页

不良信息举报

模式识别(Pattern Recognition)学习笔记(十八)--感知器与神经网络

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭