题目:戳这里
题意:
给k个数,求这个数的最大子串和,输出最大子串和以及该子串左右两边的数值。
解题思路:
1e4的长度,可以O(n^2)暴力,先记录前缀和,然后两层循环遍历子串区间(l,r],子串和为sum[r]-sum[l]。
也可以用dp写,O(n)求最大子串和。
dp:
#include <iostream>
#include<cstring>
using namespace std;
const int inf = 0x3f3f3f3f;
const int maxn=10000+10;
char st[maxn];
int nu[maxn];
int dp[maxn];
int lt[maxn];
int main() {
int n;
scanf("%d", &n);
for(int i = 1; i <= n; ++i) {
scanf("%d", nu+i);
}
int l = nu[1], maxx = -1, sum = 0;
for(int i = 1; i <= n; ++i) {
if(sum >= 0) {
dp[i] = sum + nu[i];
} else {
dp[i] = nu[i];
l = nu[i];
}
sum = dp[i];
lt[i] = l;
}
int r = nu[n]; l = nu[1];
for(int i = 1; i <= n; ++i) {
if(maxx < dp[i]) {
maxx = dp[i];
l = lt[i];
r = nu[i];
}
}
if(maxx == -1) maxx = 0;
printf("%d %d %d\n", maxx, l ,r);
return 0;
}
/*
3
-1 -2 -3
*/
暴力:
#include <iostream>
#include<cstring>
using namespace std;
const int maxn=10000+10;
char st[maxn];
int nu[maxn];
int sum[maxn];
int main() {
int n;
scanf("%d", &n);
for(int i = 1; i <= n; ++i) {
scanf("%d", nu+i);
sum[i] = sum[i - 1] + nu[i];
}
int l = nu[1], r = nu[n], maxx = -1;
for(int i = 0; i < n; ++i) {
for(int j = i + 1; j <= n; ++j) {
if(sum[j] - sum[i] > maxx) {
maxx = sum[j] - sum[i];
l = nu[i + 1];
r = nu[j];
}
}
}
if(maxx == -1) printf("0 %d %d\n", l, r);
else printf("%d %d %d\n", maxx, l ,r);
return 0;
}
/*
3
-1 -2 -3
*/