深度学习是否需要特征工程

主要观点来自于知乎,说的非常好。

“深度能自动获取特征”只是对某些领域而言的。实际上深度学习只是能自动对输入的低阶特征进行组合、变换,得到高阶特征。对于图像处理之类的领域来说,像素点就可以作为低阶特征输入,组合、变换得到的高阶特征也有比较好的效果,所以看似可以自动获取特征。

在其他领域的情况就不是这样了。例如自然语言处理中,输入的字或词都是离散、稀疏的值,不像图片一样是连续、稠密的。输入原始数据进行组合、变换得到的高阶特征并不是那么有效。而且有的语义并不来自数据,而来自人们的先验知识,所以利用先验知识构造的特征是很有帮助的。

所以在深度学习中,原来的特征选择方法仍然适用。不过方便的一点是,神经网络能对特征自动进行排列组合,所以只要输入一阶特征就行,省去了手动构造高阶特征的工作量。

 

 

 

参考资料:

https://www.zhihu.com/question/44593731   深度学习如何做特征工程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小她爹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值