泛读了一些OAR相关论文

最近泛读了一些OAR分割以及医学图像分割的论文,通过这些论文了解了一些当前分割领域使用的方法。

1、多图谱
寻找论文时发现近年来有许多使用多图谱算法做医学图像分割的论文,很多其他方法的论文在介绍相关工作的时候也提到多图谱是近年来非常热门的一种图像分割算法。

方法主要是:为每个器官准备一个专家标注过的图谱集,将待分割图像与图谱集中每个图谱进行一一配准,最后将结果通过投票等方式融合。总结起来分为四步:图谱构建、配准、标签传播、标签融合。

配准就是将图谱图像形变,使其尽可能相似于待分割图像,并把形变信息(映射函数或形变矩阵)保存下来。

2、水平集
形变模型中最重要的一类是主动轮廓模型(Active Contour Model),它可以分为参数主动轮廓模型和几何主动轮廓模型,而后者也被称为水平集模型。

形变模型的基本原理是给定在初始的曲线或曲面,然后使其在内力和外力的作用下演化,从而收敛于感兴趣目标的边缘。其中驱动模型运动的外力主要来自于待分割图像中的特征信息,而内力则用来使曲线或曲面在演化过程中尽量保持光滑。

3、**主动形状模型(ASM)、统计形状模型(SSM)**等结合先验信息的算法以及一系列基于模糊模型的算法。

4、深度学习
从slice-by-slice进行3D图像分割的2D CNN到直接使用3D卷积核的3D U-Net和V-Net,深度学习在图像分割中一直是效果最好的,近年来各种深度学习相关的论文也是层出不穷。

从使用的方法来看,近年深度学习进行图像分割的文章很多都是深度学习+的模式,比如在论文中看到的网络+CRF、网络+Markov 、网络+先验信息等形式,所以由此考虑是否采用这种网络+传统方法的形式解决课题中OAR分割的问题。

最近泛读的一些论文如下:
【1】 2014 方法:一种基于特征点(landmark-based)的目标物体形状表示方法。 应用实验:CT图像的腰椎和股骨头分割,Dice coeffificient分别达到0.936和0.962。

【2】 2014 方法:一种基于图谱的分割方法,结合了统计外观模型(statistical appearance models, SAM)和测地线动态轮廓(geodesic active contours,GAC)。 应用实验:在左腮腺、右腮腺、脑干的分割中,DC 分别达到了0.81、0.84、0.86。

【3】 2014 方法:基于模糊模型的分割方法AAR,主要分建模、定位、勾画三个部分。在分割中应用了一个迭代相对模糊连通性Iterative Relative Fuzzy Connectedness(IRFC)算法。 应用实验:在胸部、腹部、颈部的OARs的CT/MRI图像中获得较好的结果。

【4】 2013 方法:一种基于图谱的分割方法,需要专家对分割结果进行手动修正,主要优点是比纯手工节约了大概40%的时间。

[【5】 2017 方法:基于3D神经网络的算法,3D 深度监督网络(DSN),用CRF做后处理。 应用:3D CT图像的肝脏分割以及3D MR图像的心脏与大血管分割。效果上比一般的3D CNN + CRF收敛更快。

【6】2019 方法:结合了水平集和多图谱的医学图像分割算法,稍有改进。主要看了多图谱算法部分的基本原理。

【7】2019 内容:本文是深度学习在医学图像分割领域的综述,介绍了各种医学图像分割中神经网络算法的基本原理、对比、应用、问题、解决方案。

【8】2017 方法:主要利用CNN + Markov random fields进行OAR分割。 应用:在50张CT图像上对脊髓等九个头颈部OAR分割,效果好的DC达到0.9,差的仅有0.37。

【9】2018 方法:称为Anatomically constrained neural networks(ACNN),结合了global shape/label信息到NN中,主要结合了PCA和Active Shape model这些早期的工作,让神经网络能够更多的利用一些先验知识。

【10】2013 方法:多分类随机回归森林(multi-class random regression forests)。主要用于CT图像中器官的检测和定位任务,文中称效果比多图谱好,可以作为分割的前置任务。

【11】2016 高引用 方法:3D U-Net,一种3D的神经网络结构,适合于3D生物医学图像的分割,仅需要少量训练集就可以获得良好的效果。

【12】2016 高引用 方法:3D V-Net, 同3D U-Net适合于3D医学图像的分割。本文应用:MRI图像的单一器官。

【13】2015 方法:提出一种新的标签融合方法,基于生成概率方法,属于多图谱方法中一个步骤的改进。

【14】2018 方法:对AAR(Automatic Anatomy Recognition)框架的进一步改进,包括寻找错误识别驱动的优化OAR层次结构算法等,是2019AAR-RT框架的前篇。
———————————————————————————————————————
【1】 Shape Representation for Efficient Landmark-Based Segmentation in 3-D
作者:Bulat Ibragimov*, B L, F P, T V

【2】 Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours
作者:Karl D.Fritscher, Marta Peroni …

【3】Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images
作者:Jayaram K. Udupa, Dewey Odhner …

【4】Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation
作者:Jean-Francois Daisne and Andreas Blumhofer

【5】3D deeply supervised network for automated segmentation of volumetric medical images
作者:Qi Dou, Lequan Yu …

【6】基于水平集与多图谱的医学图像分割算法研究——博士论文
作者:刘庆一

【7】Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges
作者:Mohammad Hesam Hesamian, Wenjing Jia …

【8】Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks
作者:Bulat Ibragimov and Lei Xing

【9】Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation
作者:Ozan Oktay , Enzo Ferrante …

【10】Regression Forests for Effiffifficient Anatomy Detection and Localization in Computed Tomography Scans
作者:A.Criminisi, D.Robertson …

【11】3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
作者:Ozgun Cicek, Ahmed Abdulkadir …

【12】V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
作者:Fausto Milletari、Nassir Navab、Seyed-Ahmad Ahmadi

【13】Head and Neck Auto Segmentation Challenge based on Non-Local Generative Models
作者:M.Orbes-Arteaga, D. …

【14】Auto-contouring via Automatic Anatomy Recognition of Organs at Risk in Head and Neck Cancer on CT images
作者:Xingyu Wu, Jayaram K.Udupa …

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值