WSL2 支持CUDA即将到来

随着Windows 10更新至2004版本,WSL2迎来了重大升级,有望全面支持CUDA工作流,使得Linux子系统在Windows平台上的深度学习开发更为便捷。升级过程中需注意主板虚拟化支持及win10相关组件的开启。

WSL2 即将支持 CUDA工作流

记录一下从WSL1 升级到WSL 2 的一些过程。

win10 更新到2004 版本之后,就能升级wsl 2 了。但是有一些坑,

这里做一个记录。

一定要在主板开启虚拟化支持, 一般在CPU选项卡里面进行设置。

其次打开win10 的

尽量多打开几个,然后重启一下,

执行命令 wsl --set-version ubuntu-20.04 2

即可升级成功。如果不成功从微软官网更新内核版本

 

这个特性很激动人心。做过深度学习的朋友都知道,很多框架还有现成的代码都是基于LInux下编写的。

如果WSL2 以后完全支持CUDA操作。那么Linux子系统在win 10 下就将是完全可用的状态。届时,win系统下的开发将势不可挡。

微软牛逼!NVIDIA牛逼!

参考博客https://developer.nvidia.com/cuda/wsl

### 验证 WSL2CUDA 的安装情况 在 WSL2 环境中验证 CUDA 是否安装成功,可以通过以下几种方式确认: #### 1. 检查 CUDA 版本信息 运行以下命令,查看系统中 CUDA 的版本信息: ```bash nvcc --version ``` 该命令将输出 CUDA 编译器驱动程序的版本,包括 CUDA 工具包的版本号。如果输出中包含 `release` 字段,则表示 CUDA 已正确安装[^4]。 #### 2. 检查 NVIDIA 驱动是否正常加载 运行以下命令,查看 NVIDIA 驱动是否在 WSL2 中正常加载: ```bash nvidia-smi ``` 如果命令成功执行并输出当前 GPU 的状态信息(如显存使用情况、运行的进程等),则表示 WSL2 已正确识别并加载了 NVIDIA GPU 驱动[^2]。 #### 3. 编译并运行 CUDA 示例程序 可以使用一个简单的 CUDA 程序来验证 CUDA 是否可以正常编译和执行。例如,创建一个名为 `vector_add.cu` 的文件,并输入以下代码: ```cpp #include <stdio.h> __global__ void vectorAdd(int *a, int *b, int *c, int n) { int i = threadIdx.x; if (i < n) { c[i] = a[i] + b[i]; } } int main() { int n = 5; int a[] = {1, 2, 3, 4, 5}; int b[] = {10, 20, 30, 40, 50}; int c[n]; int *d_a, *d_b, *d_c; cudaMalloc(&d_a, n * sizeof(int)); cudaMalloc(&d_b, n * sizeof(int)); cudaMalloc(&d_c, n * sizeof(int)); cudaMemcpy(d_a, a, n * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_b, b, n * sizeof(int), cudaMemcpyHostToDevice); vectorAdd<<<1, n>>>(d_a, d_b, d_c, n); cudaMemcpy(c, d_c, n * sizeof(int), cudaMemcpyDeviceToHost); for (int i = 0; i < n; i++) { printf("%d ", c[i]); } cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); return 0; } ``` 使用 `nvcc` 编译该程序: ```bash nvcc vector_add.cu -o vector_add ``` 运行编译后的程序: ```bash ./vector_add ``` 如果程序成功运行并输出结果 `11 22 33 44 55`,则表示 CUDA 已正确配置并能够执行 GPU 加速任务[^3]。 #### 4. 检查 CUDA 环境变量是否配置正确 运行以下命令,确认 CUDA 的环境变量已正确配置: ```bash echo $PATH | grep cuda echo $LD_LIBRARY_PATH | grep cuda ``` 如果输出中包含 `/usr/local/cuda/bin` 和 `/usr/local/cuda/lib64` 等路径,则表示 CUDA 的环境变量已正确设置[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值