Tensorflow2 model.compile()理解

在TensorFLow2中进行神经网络模型的训练主要包括以下几个主要的步骤:

  • 导入相关模块import
  • 准备数据,拆分训练集train、测试集test
  • 搭建神经网络模型model (两种方法:Sequential或自定义模型class)
  • 模型编译model.compile()
  • 模型训练model.fit()
  • 查看模型model.summary()
  • 模型评价
  • 模型预测model.predict()

model.compile()的作用就是为搭建好的神经网络模型设置损失函数loss、优化器optimizer、准确性评价函数metrics。

这些方法的作用分别是:

  • 损失函数和优化器用在反向传播的时候,我们会求损失函数对训练变量的导数,即梯度,然后根据选择的优化器来确定参数更新公式,根据公式对可训练参数进行更新。
  • 准确性评价函数用在评估模型预测的准确性。在模型训练的过程中,我们会记录模型在训练集、验证集上的预测准确性,之后会据此绘制准确率随着训练次数的变化曲线。通过查看和对比训练集、测试集随着训练次数的准确率曲线,我们能发现模型是否是过拟合、欠拟合,或者也可以发现多少轮后可以停止模型训练了。

由上可以看出,神经网络模型建模训练的过程中,核心的灵魂环节就是搭建模型和编译compile了。所以,这是非常非常重要的一个模块。

1、首先,上代码,直观看下model.compile()在神经网络建模中的使用示例

#model.compile()配置模型训练方法
model.compile(  
    optimizer = tf.keras.optimizers.SGD(lr = 0.1), #使用SGD优化器,学习率为0.1
    loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = False), #配置损失函数
    metrics = ['sparse_categorical_accuracy'] #标注准确性评价指标
)

2、解读model.compile()中配置方法

compile(optimizer,  #优化器
        loss=None,  #损失函数
        metrics=None,   # ["准确率”]
        loss_weights=None, 
        sample_weight_mode=None, 
        weighted_metrics=None, 
        target_tensors=None)

2.1  loss可以是字符串形式给出的损失函数的名字,也可以是函数形式

例如:”mse" 或者 tf.keras.losses.MeanSquaredError()

           "sparse_categorical_crossentropy"  或者  tf.keras.losses.SparseCatagoricalCrossentropy(from_logits = False)

   损失函数经常需要使用softmax函数来将输出转化为概率分布的形式,在这里from_logits代表是否将输出转为概率分布的形式,为False时表示转换为概率分布,为True时表示不转换,直接输出

2.2  optimizer可以是字符串形式给出的优化器名字,也可以是函数形式,使用函数形式可以设置学习率、动量和超参数

例如:“sgd”   或者   tf.optimizers.SGD(lr = 学习率,

                                                             decay = 学习率衰减率,

                                                              momentum = 动量参数)

           “adagrad"  或者  tf.keras.optimizers.Adagrad(lr = 学习率,

                                                                                   decay = 学习率衰减率)

            ”adadelta"  或者  tf.keras.optimizers.Adadelta(lr = 学习率,

                                                                                     decay = 学习率衰减率)

             “adam"  或者  tf.keras.optimizers.Adam(lr = 学习率,

                                                                            decay = 学习率衰减率)

2.3 Metrics神经网络模型的准确性评价指标

例如:

        "accuracy" : y_ 和 y 都是数值,如y_ = [1] y = [1]  #y_为真实值,y为预测值

        “sparse_accuracy":y_和y都是以独热码 和概率分布表示,如y_ = [0, 1, 0], y = [0.256, 0.695, 0.048]

        "sparse_categorical_accuracy" :y_是以数值形式给出,y是以 独热码给出,如y_ = [1], y = [0.256 0.695, 0.048]
 

import tensorflow as tf from tensorflow import keras from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten from tensorflow.keras.layers import Conv2D, Conv1D, BatchNormalization, MaxPooling2D,Conv2DTranspose from tensorflow.keras.optimizers import Adam # 优化器 import tensorflow.keras from tensorflow.keras import optimizers def build_model(): model = Sequential() # Sequential模型是keras两种模型之一,另一种是model模型 """构建模型""" # 第一层卷积,需要指定input_shape的参数 num_classes = 7 img_size = 48 model.add(Conv2D(32, (1, 1), strides=1, padding='same', input_shape=(img_size, img_size, 1))) model.add(Activation('relu')) # 激活函数 model.add(Conv2D(32, (5, 5), padding='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) # 最大池化 model.add(Conv2D(32, (3, 3), padding='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (5, 5), padding='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(2048)) # 全连接层 model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(1024)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizers.RMSprop(learning_rate=0.0001), metrics=['accuracy']) # 自动扩充训练样本 model.summary() # 显示训练模型结构 return model 帮我写注释
05-26
model.summary()是Keras库中用于显示模型结构和参数数量的函数。 它可以在训练模型之前使用,用于查看模型的层次结构、每一层的输出形状以及模型的总参数数量等信息。 下面是一个示例: ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense model = Sequential() model.add(Dense(64, input_shape=(10,), activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.summary() ``` 运行上面的代码后,你将看到以下输出: ``` Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (None, 64) 704 _________________________________________________________________ dense_1 (Dense) (None, 32) 2080 _________________________________________________________________ dense_2 (Dense) (None, 1) 33 ================================================================= Total params: 2,817 Trainable params: 2,817 Non-trainable params: 0 _________________________________________________________________ ``` 上述输出中,首先显示了模型的名称("sequential"),接着是每一层的详细信息。每一层都包括层的名称、类型、输出形状和参数数量。 此外,还显示了总共的参数数量,其中包括可以被训练的参数(Trainable params)和不可训练的参数(Non-trainable params)。 总结一下,model.summary()提供了一个简洁清晰的方式来查看和分析模型的结构和参数数量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值