【转】局部敏感哈希方法快速近邻计算加持下的Embedding

转自:炼丹秘术:Embedding的翅膀

  kaggle竞赛宝典技巧 

作者:DOTA,文章摘自炼丹笔记

炼丹秘术:Embedding的翅膀

    在实践中,推荐系统利用Deep Learning去生成Embedding,然后通过Embedding在召回层进行召回是一种常用的方法,而且这种方法在效果和响应速度上也不比多路召回差。

    同时,在局部敏感哈希方法快速近邻计算的加持下,Embedding表现亮眼,本文我们来聊一聊到底Embedding的相关知识点。

什么是局部敏感哈希?

图片

    局部敏感哈希,英文locality-sensetive hashing,常简称为LSH。主要运用到高维海量数据的快速近似查找,近似查找便是比较数据点之间的距离或者是相似度。主要思想是,高维空间中,两点若距离很近,那么设计一种哈希函数对这两点进行哈希值计算,使得他们哈希值有很大的概率是一样的。同时若两点之间的距离较远,他们哈希值相同的概率会很小。

怎么实现局部敏感哈希?

图片

01

Document shingles

def shingle_document(string, k):
    import binascii
    # initialize set data structure
    set_data_structure=set()
    # for each position in string, extract substring of length k
    for i in range (len(string)-k+1):
        substring_length_k=string[i:i+k]
        
    # hash into 32-bit integer
        hash_substring=binascii.crc32( substring_length_k.encode())
    # insert into set
        set_data_structure.add(hash_substring)
    return (set_data_structure)  

02

Jaccard Similarity

def jaccard(a, b):
  # compute union size
    union_size = len(set(a).union(set(b)))
  # compute intersection size
    intersection_size=len(set(a).intersection(set(b)))
  
  # return ratio of union and intersection
    return 1.0*intersection_size/union_size

03

Jaccard Documents

def jaccard_of_documents(file_name, k):
    array_of_documents_tuples=parse_data (file_name)
    array_of_jaccard_tuples=[]
    for i in range(len(array_of_documents_tuples)):
        for j in range (i+1, len(array_of_documents_tuples)):
            a=shingle_document(array_of_documents_tuples[i][1], k)
            b=shingle_document(array_of_documents_tuples[j][1], k)
            jaccard_similarity = jaccard(a,b)
            jaccard_tuples = (array_of_documents_tuples[i][0],array_of_documents_tuples[j][0],jaccard_similarity)
            if jaccard_similarity>=0.8:
                print (jaccard_tuples)
            array_of_jaccard_tuples+=[jaccard_tuples]
    return array_of_jaccard_tuples

04

MinHash

def invert_shingles(shingled_documents):
  # initialize list for tuples
    list_of_tuples = []
  # initialize list for document ids
    list_of_documentid = []
  # for each document in input
    for shingled_document in shingled_documents:
    # append document id to list
        list_of_documentid.append(shingled_document[0])
    # for each item in document
        for item in shingled_document[1]:
      # append (item, docid) tuple
            list_of_tuples.append((item,shingled_document[0]))
  
  # sort tuple list
    list_of_tuples.sort()
  # return sorted tuple list, and document list
    return list_of_tuples, list_of_documentid

05

Generate hash functions

def make_hashes(num_hashes):
    list_of_hash_fn=[]
    for i in range(num_hashes):
        list_of_hash_fn.append(make_random_hash_fn())
        
    return list_of_hash_fn   

06

Minhash Signature Matrix

def make_minhash_signature(shingled_data, num_hash):
    inv_index, docids = invert_shingles(shingled_data)
    num_docs = len(docids)
  # initialize the signature matrix with infinity in every entry
    sigmatrix = np.full([num_hash, num_docs], np.inf)
  # generate hash functions
    hash_funcs = make_hashes(num_hash)
  # iterate over each non-zero entry of the characteristic matrix
    for row, docid in inv_index:
    # update signature matrix if needed 
    # THIS IS WHAT YOU NEED TO IMPLEMENT
        
        for row1 in range(num_hash):
            sigmatrix[row1,docids.index(docid)]=min(sigmatrix[row1,docids.index(docid)],hash_funcs[row1](row))
    return sigmatrix, docids  

07

MinHash similarity estimate

def minhash_similarity(id1, id2, minhash_sigmat, docids):
  # get column of the similarity matrix for the two documents
    index_id1=docids.index(id1)
    index_id2=docids.index(id2)
    
  # calculate the fraction of rows where two columns match
    minhash_similarity_estimate= np.mean(minhash_sigmat[:, index_id1]==minhash_sigmat[:, index_id2])
    
  # return this fraction as the minhash similarity estimate
    return minhash_similarity_estimate 

工业界怎么用Embedding?

图片

    对于电商平台而言,商品搜索服务已经是人们日常购物中重中之重的服务了,商品的召回决定了搜索系统的质量。商品搜索需要从一个巨大的语料库中找到最相关的商品,同时还要保证个性化。系统的表现主要受到搜索query和召回商品相关性,还有训练和预估不一致的影响。这篇论文就提出了一种多粒度的深度语义召回系统,保证了训练预估一致性,并使用softmax cross-entropy loss作为训练目标,使得最终召回效果更好,模型收敛速度更快。

    我们先看下淘宝商品搜索系统的全貌,每个环都是一个阶段:

图片

    我们可以看到retrieval阶段有亿级别的商品,通过我们的深度语义召回系统最终召回上万个相关商品。接下来开始介绍深度语义商品召回模型,我们有用户全集U={u1,u2,...,UN},还有query集合Q={q1, q2, ..., qN},同时还有商品集合I={i1, i2, ..., iM}。我们把用户历史行为序列参照时间区间分到3个子集,实时集合R = {i1, i2, ..., iT},短期集合 S = {i1, i2, ..., iT},长期集合L = {i1, i2, ..., iT},所以任务就是给定一个用户u的(R,S,L),以及query,返回top-K items:

图片

用户塔淘宝中的query多为中文,在切词后平均长度小于3,因此我们提出了多粒度的语义单元,从不同的语义粒度挖掘query含义,提升query的表达精度。给定一个query的切词q={w1, ..., wn}(e.g. {红色,连衣裙}),每个单词可以拆成字粒度w = {c1, ..., cm},同时我们还能拿到历史query qhis = {q1, ..., qk},所以我们可以得到6种粒度的表达:

图片

Trm用的transformer,最后把6种粒度的embedding都concat在一起。

用户行为注意力机制: 用户历史点击购买的items,和每个item的side information,都可以通过embedding的方式将每个item都映射成固定长度的向量,这里我们用query与历史行为items做attention,找到相关items。对于实时集合,使用LSTM进行编码,然后套用个self-attention层,并在序列最前面加上0向量(以防历史行为没一个相关的),最后用一个attention操作获得最终embedding,如下公式所示:

图片

图片

图片

图片

图片

    对于短期行为使用多头self-attention,头部添加0向量,并计算attention:

图片

图片

图片

图片

    对于长期行为(一个月内)而言,分别对点击,购买,加购集合进行mean pooling,再与query进行attention:

图片

图片

    对长期行为的item的店铺,类目,品牌做同样的操作,最后把embeding进行sum pooling:

图片

    最后再把以上所有进行融合:

图片

商品塔:商品塔只需要把itemID和标题进行融合得到最终embedding,如下式所示:

图片

    e表示商品embedding,wi表示标题切词,wt是转移矩阵。

    综上整个模型如下所示:

图片

    论文分析到hing loss只能做local的比较,由此会产生预估与训练的diff,所以该文直接用softmax cross-entropy loss,定义如下:

图片

    实践中论文使用的sampled softmax。

    因为存在很多噪音数据,导致query和商品完全不相关,所以论文在softmax函数引入了一个温度:

图片

    在样本上,需要构造强负例,本文提出的强负例构造方法是在样本空间中构造,给定训练样本(qu, i+, i-),i-是在样本池随机负采样,为了简化,i-在负样本池找到和qu点积最大的topN,并和i+进行融合成强负例,定义如下:

图片

    最终融合了强负例的softmax函数如下:

图片

    论文后面还有很多工程介绍,感兴趣可以参考原文。

参考资料

图片

  1. LSH-局部敏感哈希 https://zhuanlan.zhihu.com/p/225949044

  2. https://github.com/elhamsharifi/Similar-Document-Searching/blob/master/Similar_Document_Searching.ipynb

  3. 淘宝搜索中基于embedding的召回

  4. https://www.zhihu.com/people/yuconan

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值