Learning:数论(一) 简单数论函数与狄利克雷卷积

7 篇文章 2 订阅
4 篇文章 0 订阅

数论函数的定义:在数论上,算术函数(或称数论函数)指定义域为正整数、陪域为复数的函数,每个算术函数都可视为复数的序列。(摘自百度百科)
(其实我们只需要知道这是定义域为正整数的函数就OK了)
以下写的函数都是数论函数

数论函数加法: ( f + g ) ( n ) = f ( n ) + g ( n ) (f+g)(n)=f(n)+g(n) (f+g)(n)=f(n)+g(n)
数论函数数乘: ( λ f ) ( n ) = λ ⋅ f ( n ) ( λ 为 常 数 ) (\lambda f)(n)=\lambda\cdot f(n)(\lambda为常数) (λf)(n)=λf(n)(λ)
狄利克雷卷积
h = f ∗ g h=f*g h=fg,则 h ( n ) = ∑ d ∣ n f ( d ) g ( n d ) h(n)=\sum_{d|n}f(d)g(\frac{n}{d}) h(n)=dnf(d)g(dn)

狄利克雷卷积有以下性质:

  1. 交换律: f ∗ g = g ∗ f f*g=g*f fg=gf
  2. 结合律: ( f ∗ g ) ∗ h = f ∗ ( g ∗ h ) (f*g)*h=f*(g*h) (fg)h=f(gh) ( λ f ) ∗ g = λ ( f ∗ g ) (\lambda f)*g=\lambda(f*g) (λf)g=λ(fg)
  3. 分配律: ( f + g ) ∗ h = f ∗ h + g ∗ h (f+g)*h=f*h+g*h (f+g)h=fh+gh

定义单位元 ϵ ( n ) = [ n = 1 ] \epsilon(n)=[n=1] ϵ(n)=[n=1]
易得: ϵ ∗ f = f \epsilon*f=f ϵf=f
还有一个性质:对于任意的数论函数 f f f,若 f ( 1 ) ̸ = 0 f(1)\not=0 f(1)̸=0,则存在数论函数 g g g满足 g ∗ f = ϵ g*f=\epsilon gf=ϵ,我们叫 g g g f f f的逆元。
易得:
g ( 1 ) = 1 f ( 1 ) g(1)=\frac{1}{f(1)} g(1)=f(1)1
g ( n ) = − 1 f ( 1 ) ∑ d ∣ i , d ̸ = 1 f ( d ) g ( n d ) g(n)=-\frac{1}{f(1)}\sum_{d|i,d\not=1}f(d)g(\frac{n}{d}) g(n)=f(1)1di,d̸=1f(d)g(dn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值