数论函数的定义:在数论上,算术函数(或称数论函数)指定义域为正整数、陪域为复数的函数,每个算术函数都可视为复数的序列。(摘自百度百科)
(其实我们只需要知道这是定义域为正整数的函数就OK了)
以下写的函数都是数论函数
数论函数加法:
(
f
+
g
)
(
n
)
=
f
(
n
)
+
g
(
n
)
(f+g)(n)=f(n)+g(n)
(f+g)(n)=f(n)+g(n)
数论函数数乘:
(
λ
f
)
(
n
)
=
λ
⋅
f
(
n
)
(
λ
为
常
数
)
(\lambda f)(n)=\lambda\cdot f(n)(\lambda为常数)
(λf)(n)=λ⋅f(n)(λ为常数)
狄利克雷卷积:
若
h
=
f
∗
g
h=f*g
h=f∗g,则
h
(
n
)
=
∑
d
∣
n
f
(
d
)
g
(
n
d
)
h(n)=\sum_{d|n}f(d)g(\frac{n}{d})
h(n)=∑d∣nf(d)g(dn)
狄利克雷卷积有以下性质:
- 交换律: f ∗ g = g ∗ f f*g=g*f f∗g=g∗f
- 结合律: ( f ∗ g ) ∗ h = f ∗ ( g ∗ h ) (f*g)*h=f*(g*h) (f∗g)∗h=f∗(g∗h)或 ( λ f ) ∗ g = λ ( f ∗ g ) (\lambda f)*g=\lambda(f*g) (λf)∗g=λ(f∗g)
- 分配律: ( f + g ) ∗ h = f ∗ h + g ∗ h (f+g)*h=f*h+g*h (f+g)∗h=f∗h+g∗h
定义单位元
ϵ
(
n
)
=
[
n
=
1
]
\epsilon(n)=[n=1]
ϵ(n)=[n=1]
易得:
ϵ
∗
f
=
f
\epsilon*f=f
ϵ∗f=f
还有一个性质:对于任意的数论函数
f
f
f,若
f
(
1
)
̸
=
0
f(1)\not=0
f(1)̸=0,则存在数论函数
g
g
g满足
g
∗
f
=
ϵ
g*f=\epsilon
g∗f=ϵ,我们叫
g
g
g为
f
f
f的逆元。
易得:
g
(
1
)
=
1
f
(
1
)
g(1)=\frac{1}{f(1)}
g(1)=f(1)1
g
(
n
)
=
−
1
f
(
1
)
∑
d
∣
i
,
d
̸
=
1
f
(
d
)
g
(
n
d
)
g(n)=-\frac{1}{f(1)}\sum_{d|i,d\not=1}f(d)g(\frac{n}{d})
g(n)=−f(1)1∑d∣i,d̸=1f(d)g(dn)