【AT2307】Tree Game

链接:AT2307 Tree Game(翻译在讨论中有)

大致题意:给定一颗树,树上的某个节点上有一颗棋子,每个点有一定权值,双方轮流执行:将当前棋子位置权值-1,并将之移动至相邻节点,先无法移动者输;问初始棋子在哪些节点可使先手必胜。

题解

典型的博弈论题目,先来证明一条性质:最优解一定是往比当前棋子节点权值小的地方移动;若没有,则该节点为先手的必败点。

假设当前棋子节点为 u u ,可移动的点为v1,v2,其中 wv1<wu<wv2 w v 1 < w u < w v 2 ,若向 w2 w 2 移动,则对手可以再次移回 u u ,最后先手输。因此最优解为向v1移动,同理若不存在 v v 使得wv<wu则对手可以利用上述策略获胜。

因此我们的判断条件就变为了是否存在比当前节点权值小的点。

代码
#include<iostream>
#include<cstdio>
#include<vector>

using namespace std;

bool check[3001];
int n,x,y,w[3001];
vector<int> point[3001];

bool dfs(int u,int f){
    check[u]=false;
    for(int v:point[u])if(v!=f&&w[v]<w[u]){dfs(v,u);if(!check[v]){check[u]=true;break;}}
}

int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;++i)scanf("%d",w+i);
    for(int i=1;i<n;++i)scanf("%d%d",&x,&y),point[x].push_back(y),point[y].push_back(x);
    for(int i=1;i<=n;++i){dfs(i,0);if(check[i])printf("%d ",i);}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值