链接:AT2307 Tree Game(翻译在讨论中有)
大致题意:给定一颗树,树上的某个节点上有一颗棋子,每个点有一定权值,双方轮流执行:将当前棋子位置权值-1,并将之移动至相邻节点,先无法移动者输;问初始棋子在哪些节点可使先手必胜。
题解
典型的博弈论题目,先来证明一条性质:最优解一定是往比当前棋子节点权值小的地方移动;若没有,则该节点为先手的必败点。
假设当前棋子节点为 u u ,可移动的点为,其中 wv1<wu<wv2 w v 1 < w u < w v 2 ,若向 w2 w 2 移动,则对手可以再次移回 u u ,最后先手输。因此最优解为向移动,同理若不存在 v v 使得则对手可以利用上述策略获胜。
因此我们的判断条件就变为了是否存在比当前节点权值小的点。
代码
#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
bool check[3001];
int n,x,y,w[3001];
vector<int> point[3001];
bool dfs(int u,int f){
check[u]=false;
for(int v:point[u])if(v!=f&&w[v]<w[u]){dfs(v,u);if(!check[v]){check[u]=true;break;}}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i)scanf("%d",w+i);
for(int i=1;i<n;++i)scanf("%d%d",&x,&y),point[x].push_back(y),point[y].push_back(x);
for(int i=1;i<=n;++i){dfs(i,0);if(check[i])printf("%d ",i);}
}