数字图像处理
5.图像恢复与重建
5.1 图像复原定义
利用退化现象的某种先验知识,重建或恢复被退化的图像。
首先,根据图像退化的先验知识建立退化模型,以此模型为基础,采用滤波等手段进行处理,使得复原后图像符合一定准则,达到改善图像目的。
处理流程:
5.2 典型噪声模型
高斯噪声、瑞利噪声、伽马噪声、指数噪声、椒盐噪声(脉冲噪声)
5.3 噪声复原滤波:均值滤波器、统计排序滤波器
均值滤波器:包括算术均值滤波器、几何均值滤波器、谐波平均滤波器、反谐波平均滤波器。
其中算术平均滤波器平滑局部图像、降低噪声、但会造成图像模糊。几何均值滤波器效果好于算术平均滤波器,可保留更多细节效果。
谐波平均滤波器处理盐粒噪声、高斯噪声,但对胡椒噪声无效。
反谐波平均滤波器用于消除椒盐噪声。
统计排序滤波器:包括极值滤波器(最大值用于降低胡椒噪声、最小值降低盐粒噪声)、中点滤波器(处理随机噪声,如高斯噪声、均匀噪声)、中值滤波器(适用于降低单极或双极随机噪声)。