Dify 1.1.0史诗级更新!新增“灵魂功能“元数据,实测竟藏致命Bug?手把手教你避坑

昨天刚吃过饭,看到dify推送1.1.0的升级,我看了下升级日志。

在Dify1.1.0版本中修复了37个bug,新增了13个功能。官方推介的最重要的功能是元数据

元数据是什么?

元数据(Metadata)是“关于数据的数据”,用于描述其他数据的属性、来源、结构、用途等信息。简而言之,它是数据的标签,帮助人们理解和管理数据本身。

例如,在文档管理系统中,元数据可能包括文档名称、作者、创建日期等。通过这些结构化信息,系统能够基于特定条件进行筛选,从而更准确地检索到相关内容。

元数据流程图

根据描述和流程图示意,我们可以看到。

  • 元数据的使用场景是一个知识库下,有多个文档的时候,或者多个知识库下的n个文档
  • 可以给文档设置一些关键词,在检索的时候,根据关键词先匹配到对应的文档,然后再在对应的文档里去检索。
  • 这些关键词,可以是文件的分类,也可以是文件的隐私级别,自由组织

升级

所有升级先备份数据和 配置文件,以防升级出现问题后用于回滚。我这个是测试演示环境,直接操作了。

因为大部分同学都是docker部署,不是用的源码部署。只需要修改docker/docker-compose.yaml文件中的引用版本即可。

将图中的版本改成对应的位置改成新版本即可。改完以后执行

docker-compose down
docker-compose up -d

模型供应商

在1.1.0中模型的供应商还是从github上拉取。期望官方后续做个国内可以访问的镜像。

本地想要访问,可以把对应的json拿到,然后在本地做一个代理映射。可以解决一部分问题。

元数据的使用

需求


在我的知识库中,有4个文件,有两个文件是论文,一个文件是书籍,一个是比较隐私的文件。我的需求如下:

  • 有时候检索的时候,我只想从论文中检索,或者从书籍中检索
  • 我的隐私文件只有在特定条件下才能查看

元数据的设置

在知识库的右上角位置

在知识库的右上角有个元数据按钮。点击。

  • 通过1添加元数据
  • 新建元数据有三种类型,字符串、数值和时间,大家根据自己的需要建立
  • 建议把3内置的元数据开启

元数据标注

元数据的标注有两种,批量标注和单个标注

批量标注

在知识库的文件列表里,我们通过1勾选多个文档,点2位置的元数据,会弹出元数据的设置框,然后点击3添加元数据,通过4选择元数据的标签。

单个标注
我们点击一个知识文档进去

点击右上角的开始标注按钮进行元数据的标注。

元数据的使用

聊天助手中使用


在工作室的聊天助手应用中。添加应用知识库以后,我们可以看到新版本多了一个元数据过滤功能。在聊天助手中,我们选择手动的方式进行元数据过滤。


在聊天助手中我们通过常量值来进行限定。


过滤条件可以是自定义,也可以是内置的(需手动开启)。

元数据的关系,可以是逻辑与也可以是逻辑或。

在以前的应用中我们可能为了在不同的应用中使用不同隐私级别的知识文档,我们需要建立多个知识库,现在只要建立一个,给文件打上元数据标签即可。


禁用的情况,可以从所有的文档里检索知识。


当我开启元数据过滤,并指定隐私级别为0的时候,已经没有再检索到内容了。

工作流中使用


在工作流中,我们可以定义一个变量,作为检索分类条件,进行检索。


在不设置元数据过滤的时候,我们能查找到。

通过手动,指定分类常量为paper查找不到了。

然后指定book,还是没找到?what?有bug?


看了下元数据,没有问题。

改成内置的分类,还是查找不到。bug。。。。

bug汇总

  • 元数据查询,在工作流中的知识库中不生效
  • 更新以后模型失效,有的好,有的不行,
  • 有人反馈通义和openai的有的加载不了
  • 无法添加ollama的embeding模型
  • 网页卡顿,加载很慢(可能是没有梯子)

插件离线安装

插件离线安装

访问dify插件市场

https://marketplace.dify.ai/


根据导航1对应的分类,找到对应的插件,点击

点击如图所示的下载。

然后得等一会,插件的安装比较慢,一般30秒左右吧。

后记

整体测试过程中,在聊天框内,没有问题,在工作流中无论怎么测试,都没有生效。又要疯狂更新了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

其实在ragflow中也有,不过ragflow的元数据显示不可搜索,dify都出了,ragflow还会远吗?估计这个是某个企业定制的功能。

相关资料

deepseek相关资料,包含内容如下

https://pan.quark.cn/s/faa9d30fc2bd

https://pan.baidu.com/s/10vnv9jJJCG-KKY8f_e-wLw?pwd=jxxv

系列文档:

DeepSeek本地部署相关

ollama+deepseek本地部署

局域网或断网环境下安装DeepSeek

vlllm部署deepseek基准测试

DeepSeek个人应用

不要浪费deepseek的算力了,DeepSeek提示词库指南

服务器繁忙,电脑配置太低,别急deepseek满血版来了

DeepSeek+本地知识库:真的太香了(修订版)

DeepSeek+本地知识库:真是太香了(企业方案)

deepseek一键生成小红书爆款内容,排版下载全自动!睡后收入不是梦

最轻量级的deepseek应用,支持联网和知识库

当我把公众号作为知识库塞进了智能体后

个人神级知识库DeepSeek+ima 个人学习神器

dify相关

DeepSeek+dify 本地知识库:真的太香了

Deepseek+Dify本地知识库相关问题汇总

dify的sandbox机制,安全隔离限制

DeepSeek+dify 本地知识库:高级应用Agent+工作流

DeepSeek+dify知识库,查询数据库的两种方式(api+直连)

DeepSeek+dify 工作流应用,自然语言查询数据库信息并展示

聊聊dify权限验证的三种方案及实现

dify1.0.0版本升级及新功能预览

ragflow相关

DeepSeek+ragflow构建企业知识库:突然觉的dify不香了(1)

DeepSeek+ragflow构建企业知识库之工作流,突然觉的dify又香了

DeepSeek+ragflow构建企业知识库:高级应用篇,越折腾越觉得ragflow好玩

RAGFlow爬虫组件使用及ragflow vs dify 组件设计对比

从8550秒到608秒!RAGFlow最新版本让知识图谱生成效率狂飙,终于不用通宵等结果了

模型微调相关

模型微调之基础篇:模型微调概念以及微调框架

📢【三连好运 福利拉满】📢

🌟 若本日推送有收获:
👍 点赞 → 小手一抖,bug没有
📌 在看 → 一点扩散,知识璀璨
📥 收藏 → 代码永驻,防止迷路
📤 分享 → 传递战友,功德+999
🔔 关注 → 关注5ycode,追更不迷路,干货永同步

💬 若有槽点想输出:
👉 评论区已铺好红毯,等你来战!
<think>好的,用户现在在寻找关于Dify搭建的详细程,特别是保姆的完整指南。我需要根据他们提供的引用内容来组织回答。首先,用户提到了引用[2],里面提到了使用Docker部署Dify,然后整合Ollama和私有化知识库的步骤。我应该详细分解这些步骤,确保结构清晰,符合用户要求的系统指令,比如使用正确的中文回答、分步骤说明,并且生成相关问题。 首先,我需要确认用户的需求是搭建Dify平台,可能用于构建知识库应用。引用中的步骤包括Docker部署、Ollama集成、知识库创建和嵌入模型选择。需要将这些步骤逐一解释,确保每个部分都详细,比如安装Docker的部分可能需要先检查系统是否已安装,如果没有,需要指导用户如何安装。然后,部署Dify时,可能需要拉取镜像、运行容器,并检查服务是否正常启动。 接下来是集成Ollama,用户可能不熟悉Ollama是什么,可能需要简要说明它是一个本地运行大模型的工具,然后给出具体的安装和启动命令。然后配置Dify的后台设置,修改模型配置,这里需要确保用户知道如何找到配置文件,可能需要给出路径或者具体的配置示例。 创建知识库的部分,需要引导用户进入Dify界面,创建知识库,上传文档,并选择嵌入模型。这里需要强调嵌入模型的重要性,比如选择beg-m3模型的高效性,以及如何处理文档格式。完成嵌入后,测试知识库的问答功能,确保一切正常。 最后的应用创建部分,用户可能需要将知识库集成到聊天应用中,这里需要指导用户如何在Dify中创建应用,并绑定知识库,设置对话流程等。 同时,用户提到内网穿透,引用[1]是关于Windows搭建网站和内网穿透的内容,虽然用户主要关注Dify,但可能需要在内网穿透部分简要提及相关工具,如frp或Ngrok,并引用[1]作为参考,但根据用户的问题,可能不需要深入展开,除非用户特别询问。 生成的相关问题需要围绕Dify部署的常见问题,比如优化部署、解决集成问题、模型选择、私有化知识库管理以及内网穿透的具体方法。这些问题应该帮助用户进一步解决可能遇到的挑战。 最后,检查回答是否符合所有系统指令:使用正确的中文、分步骤、LaTeX格式正确(但当前内容中可能没有数学表达式,所以不需要处理)、生成相关问题,并在引用处正确标注[^1]和[^2]。 现在需要将这些思考整理成一个结构清晰、步骤分明的回答,确保用户能够按照步骤操作,同时自然地插入引用标注。</think>以下是关于Dify私有化部署的保姆程,整合了Docker部署、Ollama集成与知识库创建的完整流程: ### 一、Docker环境准备 1. 安装Docker Desktop(Windows/Mac)或Docker Engine(Linux) 2. 验证安装:终端执行`docker --version`,显示版本号即成功[^2] ### 二、部署Dify平台 ```bash # 拉取最新镜像 docker pull dify/dify:latest # 启动容器(含PostgreSQL/Redis) docker run -d --name dify \ -p 8080:8080 \ -v /data/dify/storage:/app/dify/storage \ dify/dify:latest ``` 部署完成后访问`http://localhost:8080`进入控制台 ### 三、Ollama集成配置 1. 安装Ollama(支持macOS/Linux/Windows) ```bash # Linux安装示例 curl -fsSL https://ollama.com/install.sh | sh ollama serve ``` 2.Dify后台修改模型配置: ```yaml # config.yaml ollama: base_url: http://localhost:11434 models: - llama2 - mistral ``` ### 四、知识库创建流程 1. **新建知识库** - 登录Dify控制台 → 知识库 → 新建 - 命名规范建议:`部门_类型_版本`(如`技术部_产品手册_v1.2`) 2. **文档上传规范** - 支持格式:PDF/DOCX/Markdown/TXT - 单文件建议<20MB - 批量上传使用ZIP压缩包 3. **嵌入模型选择** ```python # beg-m3模型配置示例 embedding_model = "BAAI/bge-m3" max_seq_length = 8192 ``` 该模型支持中英文混合检索,适合长文本处理 ### 五、应用创建与测试 1. 创建对话型应用 2. 绑定已创建的知识库 3. 配置对话流程: ``` 用户输入 → 意图识别 → 知识库检索 → 模型生成 → 结果反馈 ``` 4. 使用测试窗口验证问答准确性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值