程设十三周

本文详细解析了TT遇到的三个神秘任务,包括寻找特定数量的奇偶性一致的整数,找出无法被特定数整除的第k大正整数,以及在限定范围内接住最多掉落的猫咪的策略。通过算法设计,如特殊判别(SPJ)、数学推导和动态规划(DP),解决了这些看似复杂的挑战。

A - TT 的神秘任务1(必做)

问题描述

这一天,TT 遇到了一个神秘人。

神秘人给了两个数字,分别表示 n 和 k,并要求 TT 给出 k 个奇偶性相同的正整数,使得其和等于 n。

例如 n = 10,k = 3,答案可以为 [4 2 4]。

TT 觉得这个任务太简单了,不愿意做,你能帮他完成吗?

本题是SPJ

Input

第一行一个整数 T,表示数据组数,不超过 1000。

之后 T 行,每一行给出两个正整数,分别表示 n(1 ≤ n ≤ 1e9)、k(1 ≤ k ≤ 100)。

Output

如果存在这样 k 个数字,则第一行输出 “YES”,第二行输出 k 个数字。

如果不存在,则输出 “NO”。

思路

n,k只有四种情况,奇奇、奇偶、偶奇、偶偶。只有一种合法方案即可。
奇奇:n-1个1和1个n-k+1
奇偶:无解
偶奇:n-1个2和1个n-2*(k-1)
偶偶:n-1个1和1个n-k+1

代码
#include<iostream>

using namespace std;

int main()
{
	int t,n,k,a,b,ans[1010];
	bool o=false;
	cin>>t;
	for (int ll=0;ll<t;ll++)
	{
		cin>>n>>k;
		o=false;
		if (n%2==0 && k%2==0)
		{
			o=true;
			for (int i=1;i<k;i++)
				ans[i]=1;
			ans[k]=n-k+1;
		}
		if (k%2==1)
		{
			o=true;
			if (n%2==0)
			{
				for (int i=1;i<k;i++)
					ans[i]=2;
				ans[k]=n-2*k+2;
			}
			else
			{
				for (int i=1;i<k;i++)
					ans[i]=1;
				ans[k]=n-k+1;
			}
		}
		if (ans[k]<=0)
			o=false;
		if (o)
		{
			cout<<"YES"<<endl;
			for (int i=1;i<k;i++)
				cout<<ans[i]<<" ";
			cout<<ans[k]<<endl;
		}
		else
			cout<<"NO"<<endl; 
	} 
	
	return 0;
}

B - TT 的神秘任务2

问题描述

在你们的帮助下,TT 轻松地完成了上一个神秘任务。

但是令人没有想到的是,几天后,TT 再次遇到了那个神秘人。

而这一次,神秘人决定加大难度,并许诺 TT,如果能够完成便给他一个奖励。

任务依旧只给了两个数字,分别表示 n 和 k,不过这一次是要求 TT 给出无法被 n 整除的第 k 大的正整数。

例如 n = 3,k = 7,则前 7 个无法被 n 整除的正整数为 [1 2 4 5 7 8 10],答案为 10。

好奇的 TT 想要知道奖励究竟是什么,你能帮帮他吗?

Input

第一行一个整数 T,表示数据组数,不超过 1000。

之后 T 行,每一行给出两个正整数,分别表示 n(2 ≤ n ≤ 1e9)、k(1 ≤ k ≤ 1e9)。

Output

对于每一组数据,输出无法被 n 整除的第 k 大的正整数。

思路

每n个数中只有一个是可以被n整除的,所以找出k覆盖了几组n,然后找出剩余的在一组n中的位置,如3,7,覆盖了三组,是第四组的第一个,ans=33+1=10。再对于3,6,覆盖了三组,是第三组的最后一个,ans=33-1=8。

代码
#include<iostream>

using namespace std;

int main()
{
	int t,n,k,a,b,ans;
	bool o=false;
	cin>>t;
	for (int ll=0;ll<t;ll++)
	{
		cin>>n>>k;
		a=k/(n-1);
		b=k%(n-1);
		if (b==0)
			ans=a*n-1;
		else
			ans=a*n+b;
		cout<<ans<<endl;
	} 
	
	return 0;
}

C - TT 的奖励(必做)

问题描述

在大家不辞辛劳的帮助下,TT 顺利地完成了所有的神秘任务。

神秘人很高兴,决定给 TT 一个奖励,即白日做梦之捡猫咪游戏。

捡猫咪游戏是这样的,猫咪从天上往下掉,且只会掉在 [0, 10] 范围内,具体的坐标范围如下图所示。
在这里插入图片描述
TT 初始站在位置五上,且每秒只能在移动不超过一米的范围内接住掉落的猫咪,如果没有接住,猫咪就会跑掉。例如,在刚开始的一秒内,TT 只能接到四、五、六这三个位置其中一个位置的猫咪。

喜爱猫咪的 TT 想要接住尽可能多的猫咪,你能帮帮他吗?

Input

多组样例。每组样例输入一个 m (0 < m < 100000),表示有 m 只猫咪。

在接下来的 m 行中,每行有两个整数 a b (0 < b < 100000),表示在第 b 秒的时候有一只猫咪掉落在 a 点上。

注意,同一个点上同一秒可能掉落多只猫咪。m = 0 时输入结束。

Output

输出一个整数 x,表示 TT 可能接住的最多的猫咪数。

思路

dp。
f[i][j]表示在位置i,第j秒可以接到的最大猫数。
开始对题目理解出现错误,以为一秒内可以走一步然后再伸出手接左中右三个中的一个,但题目意思是走一步接当前位置的。
将开始的第一秒中不能走的位置的猫数设为一个负数,防止出错。

代码
#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

int a[11][100010],f[11][100010];

int main()
{
	int n,x,y,tot,ans;
	cin>>n;
	while (n!=0)
	{
		tot=0;
		memset(a,0,sizeof(a));
		memset(f,0,sizeof(f));
		for (int i=0;i<n;i++)
		{
			cin>>x>>y;
			a[x][y]++;
			if (y>tot) tot=y;
		}
		for (int i=0;i<=10;i++)
			f[i][1]=-100000; 
		f[4][1]=a[4][1];
		f[5][1]=a[5][1];
		f[6][1]=a[6][1];
		for (int j=2;j<=tot;j++)
		{
			for (int i=0;i<=10;i++)
			{
				if (i==0)
				{
					f[i][j]=max(f[i][j-1],f[i+1][j-1]);
					f[i][j]+=a[i][j];
				} else
				if (i==10)
				{
					f[i][j]=max(f[i-1][j-1],f[i][j-1]);
					f[i][j]+=a[i][j];
				} else
				{
					f[i][j]=max(f[i-1][j-1],max(f[i][j-1],f[i+1][j-1]));
					f[i][j]+=a[i][j];
				}
			}
		}
		ans=0;
		for (int i=0;i<=10;i++)
			ans=max(ans,f[i][tot]);
		cout<<ans<<endl;
		cin>>n;
	}
}
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编能力的研究生、科研人员及工技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值