通过MediaCreationTool下载Win10系统镜像

        在数字时代,我们时常需要更新或重新安装操作系统以确保我们的电脑运行顺畅。如果你正在寻找一种简单有效的方法来下载Windows 10的ISO镜像文件,那么你来对地方了。无论你是打算升级现有系统、重装系统,还是创建一个USB启动盘以备不时之需,使用Microsoft官方提供的Media Creation Tool都是一个不错的选择。

        本文将详细指导你如何使用Media Creation Tool下载Windows 10的系统镜像,并创建一个可引导的安装介质。无论你是技术新手还是有一定经验的用户,都能够轻松跟随本文的步骤完成操作。让我们一起开始这段简单的下载之旅吧!

联想知识库icon-default.png?t=N7T8https://iknow.lenovo.com.cn/detail/165705?type=CSDN

### Argmax采样与Gumbel-Softmax采样的对比 #### 定义与机制 Argmax操作是从给定的一组概率中选取具有最高概率的类别作为输出。这一过程是非随机性的,总是返回最可能的结果。 相比之下,Gumbel-Softmax引入了随机性,在logits上加上来自Gumbel分布的噪声之后再执行Softmax函数来近似离散分布抽样[^2]。这使得模型能够在训练期间保留梯度信息并允许反向传播算法更新参数。 #### 应用场景 当需要确切的最大值预测时,比如分类任务中的最终决策阶段,通常采用argmax方法。然而,在涉及强化学习或变分自编码器等情况下,其中期望对不确定性和探索有所表示,则更倾向于使用带有温度参数控制平滑程度的Gumbel-Softmax技巧[^1]。 #### 优点分析 ##### Argmax采样 - **简单直观**:直接选择最大可能性选项,易于理解和实现。 - **确定性强**:每次都会给出相同的决定,适合于那些不需要考虑多样性的场合。 ##### Gumbel-Softmax采样 - **可微分性**:由于加入了连续松弛(即通过调整τ),因此可以在神经网络框架内方便地计算损失相对于输入logit的导数。 - **支持不确定性建模**:能够表达不同样本间的差异以及提供一定程度上的多样性,有助于防止过拟合现象的发生。 #### 缺点探讨 ##### Argmax采样 - **缺乏灵活性**:一旦做出选择就无法改变,不利于处理动态环境下的问题求解。 - **不可导特性**:因为它是硬性分配而不是软性加权平均的形式,所以在某些特定架构下难以与其他组件协同工作。 ##### Gumbel-Softmax采样 - **复杂度增加**:相较于简单的取大运算而言,增加了额外的操作步骤和超参调节需求(如设置合适的τ值)- **潜在偏差风险**:如果设定不当的话可能会导致估计结果偏离真实情况较远;另外,随着维度的增长也可能面临数值稳定性挑战。 ```python import torch from torch.distributions import gumbel def sample_gumbel_softmax(logits, temperature=1.0): """Sample from the Gumbel-Softmax distribution and optionally discretize. Args: logits: [batch_size, n_class] unnormalized log-probs temperature: non-negative scalar Returns: Sampled tensor of shape [batch_size, n_class] """ y = logits + gumbel.Gumbel(0, 1).sample(logits.shape) return torch.nn.functional.softmax(y / temperature, dim=-1) # Example usage with argmax vs gumbel-softmax sampling logits = torch.tensor([[1., 2., 3.]]) print("Argmax Sampling:", torch.argmax(logits, dim=-1)) for temp in [0.5, 1.0, 2.0]: print(f"Gumbel-Softmax Sampling (temp={temp}):", sample_gumbel_softmax(logits, temperature=temp)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值