里程计(odo)量测模型

本文探讨了如何利用车载里程计信息构建滤波量测方程,特别是通过后轮和前轮里程计模型,分析了里程计在滤波估计安装角中的作用。涉及哥氏定理、卡尔曼滤波等基础知识,并详细阐述了量测信息与真值之间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

里程计量测模型学习记录

1.概要

本文主要讨论如何利用车载里程计的输出信息构建滤波量测方程,并以此估计安装角 C i v C^v_i Civ

2.符号约定

符号 意义
V V V 速度,用角标表示是哪个系的投影。一般给出的是导航系下的速度。
C C C 旋转矩阵
x ~ \widetilde{x} x $ 某个量对应的测量值
x ~ \tilde{x} x~ 某个量对应的近似值
C i n C^{n}_{i} Cin imu到导航系(东北天)的旋转矩阵,真值
C i n ′ C^{n'}_{i} Cin 实际估计的imu到导航系的旋转矩阵。此时认为导航系不准,用n’来表示这个不准的导航系。
ϕ \phi ϕ 姿态失准角。
C i v C^v_i Civ 安装角。imu到车体系的旋转矩阵。
λ \lambda λ 安装角误差。
S o S_o So 里程计的刻度误差(比例因子系数)

3.基础知识

  1. 哥氏定理
  2. 卡尔曼滤波

4.问题描述

利用车辆前后轮里程计的输出信息,构建滤波量测方程,确定各误差状态量的系数以及新息的计算。

5. 解算过程

5.1 后轮里程计模型
后轮里程计输出为标量 v o v_o vo,据此可以构建车轮中心点O在车体坐标系v系下的速度矢量 V o v = [ 0 , v o , 0 ] T V^v_o=[0,v_o,0]^T Vov=[0,vo,0]T。首先给出以下涉及的一些基本公式:
V o v = V i v + ω v × l v V ‾ i v = C n ′ v ′ ⋅ V i n V ‾ i n = V i n + δ v i n V i v ‾ = C n ′ v ′ ⋅ V i n ‾ V i n ‾ = V i n + δ v i n ω v ‾ = C v v ′ ⋅ C i v ⋅ ( ω i + ϵ g ) = ( I − λ × ) ⋅ C i v ⋅ ( ω i + ϵ g ) C n ′ v ′ = C v v ′ ⋅ C n v ⋅ C n ′ n = ( I − λ × ) ⋅ C n v ⋅ ( I + ϕ × ) \begin{aligned} V^v_o&=V^v_i + \omega^v \times l^v \\ \overline{V}^v_i&=C^{v'}_{n'} \cdot V^n_i \\ \overline{V}^n_i&=V^n_i+\delta{v}^n_i\\ \overline{V^v_i}&=C^{v'}_{n'} \cdot \overline{V^n_i} \\ \overline{V^n_i}&=V^n_i+\delta{v}^n_i\\ \overline{\omega^v}&=C^{v'}_{v} \cdot C^{v}_{i} \cdot (\omega^i+\epsilon_g)\\ &=(I-\lambda \times) \cdot C^{v}_{i} \cdot (\omega^i+\epsilon_g)\\ C^{v'}_{n'} &= C^{v'}_{v} \cdot C^{v}_{n} \cdot C^{n}_{n'}\\ &=(I-\lambda \times) \cdot C^{v}_{n} \cdot (I+\phi \times)\\ \end{aligned} VovVivVinVivVinωvCnv=Viv+ωv×lv=CnvVin=Vin+δvin=CnvVin=Vin+δvin=CvvCiv(ωi+ϵg)=(Iλ×)Civ(ωi+ϵg)=CvvCnvCnn=(Iλ×)Cnv(I+ϕ×)
根据以上公式,推导预测更新后的 V o v ‾ \overline {V^v_o} Vov与真值以及误差状态量之间的关系如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值