里程计量测模型学习记录
1.概要
本文主要讨论如何利用车载里程计的输出信息构建滤波量测方程,并以此估计安装角 C i v C^v_i Civ
2.符号约定
符号 | 意义 |
---|---|
V V V | 速度,用角标表示是哪个系的投影。一般给出的是导航系下的速度。 |
C C C | 旋转矩阵 |
x ~ \widetilde{x} x | $ 某个量对应的测量值 |
x ~ \tilde{x} x~ | 某个量对应的近似值 |
C i n C^{n}_{i} Cin | imu到导航系(东北天)的旋转矩阵,真值 |
C i n ′ C^{n'}_{i} Cin′ | 实际估计的imu到导航系的旋转矩阵。此时认为导航系不准,用n’来表示这个不准的导航系。 |
ϕ \phi ϕ | 姿态失准角。 |
C i v C^v_i Civ | 安装角。imu到车体系的旋转矩阵。 |
λ \lambda λ | 安装角误差。 |
S o S_o So | 里程计的刻度误差(比例因子系数) |
3.基础知识
4.问题描述
利用车辆前后轮里程计的输出信息,构建滤波量测方程,确定各误差状态量的系数以及新息的计算。
5. 解算过程
5.1 后轮里程计模型
后轮里程计输出为标量 v o v_o vo,据此可以构建车轮中心点O在车体坐标系v系下的速度矢量 V o v = [ 0 , v o , 0 ] T V^v_o=[0,v_o,0]^T Vov=[0,vo,0]T。首先给出以下涉及的一些基本公式:
V o v = V i v + ω v × l v V ‾ i v = C n ′ v ′ ⋅ V i n V ‾ i n = V i n + δ v i n V i v ‾ = C n ′ v ′ ⋅ V i n ‾ V i n ‾ = V i n + δ v i n ω v ‾ = C v v ′ ⋅ C i v ⋅ ( ω i + ϵ g ) = ( I − λ × ) ⋅ C i v ⋅ ( ω i + ϵ g ) C n ′ v ′ = C v v ′ ⋅ C n v ⋅ C n ′ n = ( I − λ × ) ⋅ C n v ⋅ ( I + ϕ × ) \begin{aligned} V^v_o&=V^v_i + \omega^v \times l^v \\ \overline{V}^v_i&=C^{v'}_{n'} \cdot V^n_i \\ \overline{V}^n_i&=V^n_i+\delta{v}^n_i\\ \overline{V^v_i}&=C^{v'}_{n'} \cdot \overline{V^n_i} \\ \overline{V^n_i}&=V^n_i+\delta{v}^n_i\\ \overline{\omega^v}&=C^{v'}_{v} \cdot C^{v}_{i} \cdot (\omega^i+\epsilon_g)\\ &=(I-\lambda \times) \cdot C^{v}_{i} \cdot (\omega^i+\epsilon_g)\\ C^{v'}_{n'} &= C^{v'}_{v} \cdot C^{v}_{n} \cdot C^{n}_{n'}\\ &=(I-\lambda \times) \cdot C^{v}_{n} \cdot (I+\phi \times)\\ \end{aligned} VovVivVinVivVinωvCn′v′=Viv+ωv×lv=Cn′v′⋅Vin=Vin+δvin=Cn′v′⋅Vin=Vin+δvin=Cvv′⋅Civ⋅(ωi+ϵg)=(I−λ×)⋅Civ⋅(ωi+ϵg)=Cvv′⋅Cnv⋅Cn′n=(I−λ×)⋅Cnv⋅(I+ϕ×)
根据以上公式,推导预测更新后的 V o v ‾ \overline {V^v_o} Vov与真值以及误差状态量之间的关系如下: