【Group Normalization】Group Normalization详解

        Group Normalization (GN) 是一种解决 Batch Normalization (BN) 在小批量(small batch size)情况下失效的问题的技术。GN 是在卷积神经网络(CNN)中常用的一种归一化方法,它通过在每个样本的特征图的通道维度上进行分组归一化,提供了一种比 BN 更适合小批量训练的归一化策略。

1.为什么需要 Group Normalization?

        在 Batch Normalization 中,均值和方差是在整个批量(batch)内计算的,因此它依赖于批量大小。当批量大小较小时,计算的均值和方差的统计量会变得不稳定,导致归一化的效果较差,甚至会影响训练稳定性。这就是 GN 被提出的背景。

        与 BN 不同,Group Normalization 不依赖于批量大小,它在样本级别上进行归一化,因此即使在批量很小的情况下,它也能表现得很好。

2.Group Normalization 的核心思想

        Group Normalization 的核心思想是将每个样本的通道分为多个组(group),然后在每组内部进行归一化处理,而不是在整个批量上做归一化。换句话说,GN 只在 每个样本的通道维度 上进行归一化,并且不依赖于批量大小。

Group Normalization 的步骤

  1. 将通道分组: GN 会将每个样本的 C 个通道分为 G 组(G 是一个超参数)。每组包含 C/G 个通道。比如,如果 C=8 且 G=4,则每组包含 2 个通道。

  2. 计算每组的均值和方差: 对于每个样本,GN 会在每一组内部计算均值和方差。这里的均值和方差是在组内的通道上计算的,而不是整个批量上的通道。

    对于每个组 g 和每个样本 nnn,均值和方差计算如下:

  3. 归一化: 对于每个样本 nnn,每个组的每个通道在该组内部进行归一化:

        其中 ϵ 是一个小常数,用来防止分母为零。

     4.缩放和平移: 与 Batch Normalization 一样,GN 还可以引入学习的缩放(scale)和偏移(shift)参数。每个组都会有一对 γ和 β来对归一化后的特征进行调整:

3.Group Normalization 的优势

  1. 不依赖批量大小: 相比于 Batch Normalization,GN 在训练时不依赖批量大小,适用于小批量或每次只有一个样本的情况。这使得 GN 特别适用于计算资源有限的环境或那些批量较小的任务。

  2. 计算资源友好: 由于 GN 在每个样本的通道维度上进行归一化,它不需要跨样本计算统计量,因此在内存上也更节省。

  3. 适用于多种任务: GN 在一些需要较小批量的任务中表现出色,尤其是 视觉任务(如图像分类、物体检测)和 自然语言处理(NLP)中的任务,尤其是使用较小 batch size 时。

4.实际应用中的 Group Normalization

        Group Normalization 已经在一些需要小批量训练的任务中得到了广泛应用,尤其是在卷积神经网络(CNN)和 Transformer 模型中。它在多种不同的网络结构中都能提高训练的稳定性。

5.Group Normalization 与 Batch Normalization 的对比

特性Batch Normalization(BN)Group Normalization(GN)
归一化的维度批量(batch)维度上的所有样本每个样本内的通道(group)维度
依赖批量大小依赖批量大小(batch size)不依赖批量大小
适用于小批量训练不适合小批量(small batch size)适合小批量训练(small batch size)
计算的均值和方差整个批次中每个通道的均值和方差每个样本的每组的均值和方差
在视觉任务中的效果在大批量下效果更好,尤其是在图像任务中在小批量下(尤其是低 batch size)表现更好
训练时是否使用额外参数使用缩放和偏移参数(gamma 和 beta)使用缩放和偏移参数(gamma 和 beta)

6.总结

        Group Normalization 是一种非常有用的归一化方法,尤其适合在小批量训练时使用。通过将通道划分成多个组,并在每组内计算均值和方差,GN 能有效解决小批量训练时的稳定性问题。与 Batch Normalization 相比,Group Normalization 更加灵活,不依赖于批量大小,适用于更多样化的场景,尤其是在需要较小批量的任务中。

        如果你正在进行小批量训练,或者在计算资源有限的环境中工作,Group Normalization 是一个很好的选择。

### Group Normalization (GN) 的概念及用法 #### 什么是 Group NormalizationGroup Normalization (GN)[^3]是一种用于深度学习模型中的归一化技术,旨在解决批归一化(Batch Normalization, BN)在小批量训练场景下的不稳定问题。具体来说,GN 将特征图的通道维度划分为若干组(groups),每组内的数据独立计算均值和方差,并据此对数据进行标准化处理。 与 Batch Normalization 不同的是,GN 的计算不依赖于批量大小(batch size)。这意味着即使在使用较小批次的情况下,GN 仍然能够提供稳定的表现。 #### GN 的工作原理 假设输入张量形状为 \( N \times C \times H \times W \),其中: - \( N \): 批次大小, - \( C \): 通道数, - \( H \): 高度, - \( W \): 宽度, 则 GN 的操作流程如下: 1. **分组**: 将 \( C \) 个通道分成 \( G \) 组,每组包含 \( C/G \) 个通道。 2. **统计计算**: 对每一组分别计算该组内所有像素的均值和标准差。 3. **归一化**: 使用上述均值和标准差对该组的数据进行标准化。 4. **缩放和平移**: 应用可学习参数 \( \gamma \) 和 \( \beta \) 进行仿射变换。 最终公式可以表示为: \[ y = \frac{x - \mu_g}{\sqrt{\sigma_g^2 + \epsilon}} * \gamma + \beta, \] 其中: - \( x \): 输入; - \( y \): 输出; - \( \mu_g \), \( \sigma_g^2 \): 第 \( g \)-组的均值和方差; - \( \gamma \), \( \beta \): 学习到的比例因子和偏置项; - \( \epsilon \): 平滑常数,防止除零错误。 这种设计使得 GN 能够很好地适应不同规模的小批量数据集以及高分辨率图像的任务需求。 #### 实现代码示例 以下是 PyTorch 中实现 GN 的简单例子: ```python import torch.nn as nn # 初始化一个卷积层 conv_layer = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3) # 添加 GroupNorm 层,假设有 32 个 groups gn_layer = nn.GroupNorm(num_groups=32, num_channels=128) # 构建前向传播过程 def forward(x): x = conv_layer(x) x = gn_layer(x) return x ``` 在这里,`num_groups` 参数决定了如何划分通道数量 `num_channels` 成不同的小组来执行各自的规范化运算。 #### GN 的优点 相比其他常见的归一化方式如 Batch Norm 或 Instance Norm,GN 主要具有以下几个优势: - **不受 batch size 影响**:由于它是基于 channel grouping 计算 mean & variance,所以不会因为过小或者过大而失效。 - **适合高分辨图像任务**:比如目标检测、语义分割等领域经常遇到大尺寸图片但受限硬件资源只能采用 tiny batches 场景下表现优异。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值