4.周期信号的离散谱
周期信号的离散谱
很少见画出三维频谱的,比较直观,需要花点时间去理解从三维变为二维。
三维频谱
以频率为横轴,将所有ck画到ω=kω0处与横轴垂直的复平面上,就得到了三维频谱。
幅度频谱和相位频谱
幅度谱:以频率为横轴,以幅度为纵轴,将所有 c k c_k ck的幅度(也就是模)画到一张图中,这就是幅度谱。
周期为1s的方波信号幅度谱如图所示。
相位谱:以频率为横轴,以初相为纵轴,将所有ck的初相画到一张图中,这就是相位谱。
周期为1s的方波信号相位谱如图所示。
常用周期信号的频谱
余弦信号: f ( t ) = cos ω 0 t = 1 2 e j ω 0 t + 1 2 e − j ω 0 t f(t)=\cos\omega_0t=\frac{1}{2}\mathrm{e}^{\mathrm{j}\omega_0t}+\frac{1}{2}\mathrm{e}^{-\mathrm{j}\omega_0t} f(t)=cosω0t=21ejω0t+21e−jω0t
正弦信号: f ( t ) = sin ω 0 t = 1 2 j ( e j ω 0 t − e − j ω 0 t ) = − j 2 e j ω 0 t + j 2 e − j ω 0 t f(t)=\sin\omega_{0}t=\frac{1}{2\mathrm{j}}\Big(\mathrm{e}^{\mathrm{j}\omega_{0}t}-\mathrm{e}^{-\mathrm{j}\omega_{0}t}\Big)=-\frac{\mathrm{j}}{2}\mathrm{e}^{\mathrm{j}\omega_{0}t}+\frac{\mathrm{j}}{2}\mathrm{e}^{-\mathrm{j}\omega_{0}t} f(t)=sinω0t=2j1(ejω0t−e−jω0t)=−2jejω0t+2je−jω0t
方波: c k = 1 2 s i n c ( k 2 ) c_k=\frac{1}{2}\mathrm{sinc}\left(\frac{k}{2}\right) ck=21sinc(2k)
周期矩形信号: c k = 1 n s i n c ( k n ) c_k=\frac{1}{n}\mathrm{sinc}\left(\frac{k}{n}\right) ck=n1sinc(nk)
常见的频谱应该有一定的认知,不用知道具体的计算公式,知道形状即可。