4.周期信号的离散谱

4.周期信号的离散谱

周期信号的离散谱

很少见画出三维频谱的,比较直观,需要花点时间去理解从三维变为二维。

三维频谱

以频率为横轴,将所有ck画到ω=kω0处与横轴垂直的复平面上,就得到了三维频谱。

image

幅度频谱和相位频谱

幅度谱:以频率为横轴,以幅度为纵轴,将所有 c k c_k ck的幅度(也就是模)画到一张图中,这就是幅度谱。

周期为1s的方波信号幅度谱如图所示。

image

相位谱:以频率为横轴,以初相为纵轴,将所有ck的初相画到一张图中,这就是相位谱。

周期为1s的方波信号相位谱如图所示。

image

常用周期信号的频谱

余弦信号: f ( t ) = cos ⁡ ω 0 t = 1 2 e j ω 0 t + 1 2 e − j ω 0 t f(t)=\cos\omega_0t=\frac{1}{2}\mathrm{e}^{\mathrm{j}\omega_0t}+\frac{1}{2}\mathrm{e}^{-\mathrm{j}\omega_0t} f(t)=cosω0t=21ejω0t+21ejω0t

image​​imageimage

正弦信号: f ( t ) = sin ⁡ ω 0 t = 1 2 j ( e j ω 0 t − e − j ω 0 t ) = − j 2 e j ω 0 t + j 2 e − j ω 0 t f(t)=\sin\omega_{0}t=\frac{1}{2\mathrm{j}}\Big(\mathrm{e}^{\mathrm{j}\omega_{0}t}-\mathrm{e}^{-\mathrm{j}\omega_{0}t}\Big)=-\frac{\mathrm{j}}{2}\mathrm{e}^{\mathrm{j}\omega_{0}t}+\frac{\mathrm{j}}{2}\mathrm{e}^{-\mathrm{j}\omega_{0}t} f(t)=sinω0t=2j1(ejω0tejω0t)=2jejω0t+2jejω0t

imageimageimage

方波: c k = 1 2 s i n c ( k 2 ) c_k=\frac{1}{2}\mathrm{sinc}\left(\frac{k}{2}\right) ck=21sinc(2k)

image

周期矩形信号: c k = 1 n s i n c ( k n ) c_k=\frac{1}{n}\mathrm{sinc}\left(\frac{k}{n}\right) ck=n1sinc(nk)

imageimage

常见的频谱应该有一定的认知,不用知道具体的计算公式,知道形状即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值