周期性函数可以在傅里叶级数中展开,也就是说,如果给定了各个频率分量的幅度和相位,则可以确定原信号。频谱是信号的一种图形表示方法,它将各个频率分量上的系数关系用图形的方法表示出来,用来说明信号的特性。并且后续可以给信号处理带来很多便利。
频谱图由两个部分组成:振幅频谱和相位频谱。
-
振幅频谱用来表示信号含有的各个频率分量的幅度,其横坐标为频率,纵坐标为各个对应频率分量的幅度;
-
相位频谱用来表示含有各个频率分量的相位。其横坐标为频率,纵坐标为各个对应频率分量的相位。
傅里叶级数分为实数形式的傅里叶级数以及复数形式的傅里叶级数,因此,傅里叶级数的频谱对应的也有两种形式。
本篇文章中所用到的图像来自于东南大学孟桥老师的课件,感谢老师对学生的耐心讲解。
1. 实数形式傅里叶级数对应的频谱
由实数形式傅里叶级数:
f ( t ) = a 0 2 + ∑ n = 1 + ∞ A n c o s ( n Ω t + φ n ) A n = a n 2 + b n 2 , φ n = − a r c t a n b n a n \begin{aligned} f(t)&=\frac{a_0}{2}+\sum_{n=1}^{+\infty}A_ncos(n\Omega t + \varphi_n) \\A_n &= \sqrt{a_n^2+b_n^2}, \\\varphi_n &= -arctan\frac{b_n}{a_n} \end{aligned} f(t)Anφn=2a0+n=1∑+∞Ancos(nΩt+φn)=an2+bn2,=−arctananbn
其对应的频谱图示意图如下:
由于这种形式的傅里叶级数中的级数 n n n一定大于等于,因此这种频谱的横坐标仅有正数,这种频谱也称为单边频谱。
比如周期性方波的频谱,其傅里叶级数为:
f ( t ) = 4 π [ s i n ( Ω t ) + 1 3 s i n ( 3 Ω t ) + 1 5 s i n ( 5 Ω t ) + ⋯ + 1 n s i n ( n Ω t ) ] , n 为 奇 数 f(t) = \frac{4}{\pi}[sin(\Omega t)+\frac{1}{3}sin(3\Omega t)+\frac{1}{5}sin(5\Omega t)+\cdots + \frac{1}{n}sin(n\Omega t)], n为奇数 f(t)=π4[sin(Ωt)+31sin(3Ωt)+51sin(5Ωt)+⋯+n1sin(nΩt)],n为奇数
即:
a n = 2 T ∫ 0 T f ( t ) c o s ( n Ω t ) d t = 0 a_n=\frac{2}{T}\int_{0}^{T}f(t)cos(n\Omega t)dt=0 an=T2∫0Tf(t)cos(nΩt)dt=0
b n = 2 T ∫ 0 T f ( t ) s i n ( n Ω t ) d t = { 4 n π , n 为 奇 数