莫比乌斯函数与欧拉函数

欧拉筛

对于两个互质的正整数 n , m ,如果满足:

f(n)(m)=f(n)f(m)
那么 f ( n ) 这个函数就是一个积性函数。
如果对于任意两个正整数 n , m ,满足


那么 f ( n ) 就是一个完全积性函数。

1(n)=1为极性函数

f(n)=[n=1]

\left\{\begin{matrix} n==1&true\\ n\neq 1&false\\ \end{matrix}\right.

单位函数 \epsilon (n)=[n=1]

\sigma _{k}(n)=\sum_{d\mid n}d^{k}

当k=0时,一般记作d(n)或\tau (n)

欧拉函数

欧拉函数有一下性质

\phi(n)=\sum_{i=1}^{n}[gcd]=1质,p为素数

1.n为素数 ,phi(n)=n-1;

2.若n=p^k,\phi(n)=p^{k}-p^{k-1}

3.若n%2==0,\phi(2n)=\phi(n)因为2与1互质,phi(2)=1;

4.\sum_{d\mid n}\phi(\frac{n}{p})=n

5.若p%n==0且p^2%n==0

\phi(\frac{n}{p})p=\phi(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值