欧拉筛
对于两个互质的正整数 n , m ,如果满足:
那么 f ( n ) 这个函数就是一个积性函数。
如果对于任意两个正整数 n , m ,满足
那么 f ( n ) 就是一个完全积性函数。
1(n)=1为极性函数
f(n)=[n=1]
单位函数
当k=0时,一般记作d(n)或
欧拉函数
欧拉函数有一下性质
质,p为素数
1.n为素数 ,phi(n)=n-1;
2.若n=p^k,
3.若n%2==0,因为2与1互质,phi(2)=1;
4.
5.若p%n==0且p^2%n==0