03_【数据结构】07_ Python实现 构造二叉树 层次遍历 先序遍历 中序遍历 后序遍历

'''
链表思想
构造二叉树

'''

class Node(object):
    """"""
    def __init__(self, item):
        self.elem = item
        self.lchild = None
        self.rchild = None

class Tree(object):
    """二叉树"""
    def __init__(self):
        self.root = None

    def add(self, item):
        node = Node(item)
        if self.root is None:
            self.root = node           #直接让根节点指向该node
            return
        queue = [self.root]         #根节点入队
        while queue:            #只要列表不为空,则进入循环,否则结束。 注意:bool( [])  --> False ,but, bool( [None] )--> True
            cur_node = queue.pop(0)  #让第一个根节点弹出
            if cur_node.lchild is None:
                cur_node.lchild = node
                return
            else: #若该节点的有左子,入队
                queue.append(cur_node.lchild)
            if cur_node.rchild is None:
                cur_node.rchild = node
                return
            else:
                queue.append(cur_node.rchild)

'''
广度优先(层次检索)遍历
'''

    def breadth_travel(self):
        """广度遍历"""
        if self.root is None:
            return
        queue = [self.root]
        while queue:
            cur_node = queue.pop(0)
            print(cur_node.elem, end=" ")
            if cur_node.lchild is not None:
                queue.append(cur_node.lchild)
            if cur_node.rchild is not None:
                queue.append(cur_node.rchild)

'''
每次都看成一棵树

前序遍历的递推公式: 根左右 
preOrder(r) = print r->preOrder(r->left)->preOrder(r->right)

中序遍历的递推公式: 左根右
inOrder(r) = inOrder(r->left)->print r->inOrder(r->right)

后序遍历的递推公式: 左右根
postOrder(r) = postOrder(r->left)->postOrder(r->right)->print r

时间复杂度:3种遍历方式中,每个节点最多会被访问2次,所以时间复杂度是O(n)。

'''

    def preorder(self, r):
        """先序遍历"""
        if r is None: #终止节点
            return
        print(r.elem, end=" ")
        self.preorder(r.lchild)
        self.preorder(r.rchild)

    def inorder(self, r):
        """中序遍历"""
        if r is None:
            return
        self.inorder(r.lchild)
        print(r.elem, end=" ")
        self.inorder(r.rchild)

    def postorder(self, node):
        """后序遍历"""
        if node is None:
            return
        self.postorder(node.lchild)
        self.postorder(node.rchild)
        print(node.elem, end=" ")


if __name__ == "__main__":
    tree = Tree()
    tree.add(0)
    tree.add(1)
    tree.add(2)
    tree.add(3)
    tree.add(4)
    tree.add(5)
    tree.add(6)
    tree.add(7)
    tree.add(8)
    tree.add(9)
    tree.breadth_travel()
    print(" ")
    tree.preorder(tree.root)
    print(" ")
    tree.inorder(tree.root)
    print(" ")
    tree.postorder(tree.root)
    print(" ")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值