MRF的特点
MRF理论
M
M即,马尔科夫假设,即相邻元素对最近邻元素有巨大影响。
R
R即随机,表述了马尔科夫假设的随机性
F
F即场,表示了MRF是一种顾及区域和整体的理论,就像“场”一样。
理解
马尔科夫随机场,突出的是一个元素之间的联系。
任何元素具有独立的标签概率,单单只依靠元素自己的标签结果很容易产生粗差或噪声(如一群同类型的元素中间出了一个不同类型的元素,这种现象我们通常认为,不同类型的元素为粗差或噪声),这样的粗差和噪声可能是由于观测或概率估计模型不准确造成的,为缓解这一问题,我们可以用其周围的元素对其进行约束,即考虑周围元素的对该元素的影响。这个理念就是MRF的核心,即当前元素受周围元素的影响,那么标签求解问题,就不单单是只看独立的某个元素了,还需要他们之间的联系关系(边),以及联系关系的程度大小(边能量),有了这样的联系,看上去就更像一个场的关系。
要素与实现
要素
MRF的要素有
- 元素
- 边
元素:
元素需要有它属于每个标签的能量,即Data项
边:
元素的邻接关系,一般是空间拓扑关系
边即不同标签之间需要有能量约束,表达所有标签关系所带来的影响。 即Smooth项
实现
实现是求解能量最小,一般用图割算法。MRF场形成了一个图结构,图上节点有多个标签能量,边根据不相连标签也有能量,为了使得每个节点标签唯一,就需要将多个标签在考虑边的情况下除去,即割,使得全局能量最小的个割,即为最优割或最优解。