灰度变换在图像的单个像素上操作,主要以对比度和阈值处理为目的
空间滤波涉及改善性能的操作(邻域操作),如通过图像中每一个像素的邻域处理来锐化图像
这两种方法均属于图像增强。
邻域基本增强变换
定义
邻域为1×1: Basic intensity transformation
邻域n×n: 基于空间滤波的增强
整幅图像的统计特性: 基于直方图的增强
数学表达
g ( x , y ) = T [ f ( x , y ) ] g(x,y)=T[f(x,y)] g(x,y)=T[f(x,y)] s = T [ r ] s=T[r] s=T[r]
r : r: r:原图像 f ( x , y ) f(x,y) f(x,y)在 ( x , y ) (x,y) (x,y)处的灰度值
s : s: s:增强图像 g ( x , y ) g(x,y) g(x,y)在 ( x , y ) (x,y) (x,y)处的灰度值
三种基本灰度变换技术
- 线性: 正比, 反比
- 对数: 对数, 反对数
- 幂次: n次幂, n次方根
例子
图像反转
I = imread