flink理论干货笔记(7)及spark论文相关思考

601. 注册指标,可以从getRuntimeContext(). getMetricGroup()返回MetricGroup对象,然后就能创建和注册新指标;度量类型包括Counters、Gauges、Histograms、Meters

602. Counter是计数器,方法有inc()、dec(),也可以自定义Counter;Gauges是测量,来自接口flink.metrics.Gauge,返回值类型没有限制;Histogram是直方图,方法有update,可以利用flink-metrics-dropwizard注册一个Codahale/DropWizard直方图;Meter是仪表,可用markEvent()注册事件的发生,meter()注册仪表。可用flink-metrics-dropwizard打包器注册仪表

603. 范围(scope)包括系统范围和用户范围,用metrics.scope.delimiter分割。用户范围可用MetricGroup#addGroup和#getMetricIndentifier以及#getScopeComponents。系统范围包含上下文信息,比如任务属于哪个作业,配置有metrics.scope.jm/tm/task/operator等

604. reporter是报告,具体配置有metrics.reporter.name.xxx等,可通过flink. metrics. reporter.  MetricReporter接口编写自己的报告,比如JMX报告、Ganglia报告、Graphite报告、Prometheus报告、PrometheusPushGateway报告、StatsD报告、Datadog报告、Slf4j报告等。

605. 系统指标包括5列:范围、中缀、度量、描述、类型。具体指标大类分为cpu、内存、线程、垃圾收集、类加载器、网络、集群、可用性、检查点、io、连接器、系统资源、系统cpu、系统内存、系统网络等。

606. 延迟跟踪要设置latencyTrackingInterval,此时源会定期发送特殊记录叫做LatencyMarker,所有中间算子都会保存每个源的最后一个延迟列表,以计算延迟分布。建议延迟指标只用于调试,因为会影响性能。

607. rest api可以查询度量指标,包括TM、JM、job等信息; 日志可使用log4j或logback,前者配置有log4j-cli.prooerties、log4j-yarn-session.properties、log4j.properties;logback配置有-Dlogback. configuration等,文件有logback.xml

608. 历史服务器提供了rest api,可查询JM归档的已完成作业的状态和统计信息。用historyserver.sh 启动,端口为8082;历史服务器的相关配置有historyserver.archive.fs.dir、historyserver.archive.fs.refresh-interval以及historyserver.web.tmpdir

609. 监控检查点包括:检查点计数(各种状态的)、最新完成的检查点、最新失败的检查点、最新保存点、最新还原

610. 检查点历史选项卡包括:id、状态、触发时间、最新确认、状态大小、端到端持续时间、对齐期间缓冲

611. 反压是指生成数据比下游算子消耗的速度快,于是下游记录往相反方向传播到上游。sink向上游算子施加压力

612. 采样线程,是反压检测通过反复获取正在运行的任务的堆栈跟踪样本来工作,即Thread.getStackTrace(),如果线程卡在某个内部方法调用,则存在反压。默认情况,JM为每个任务每50ms触发100个堆栈跟踪,来确定反压。

613. 以下配置JM的样本数:web. backpressure. refresh-interval、web.backpressure. num-samples、web. backpressure. delay-between-samples;反压状态有ok、low、high,其中high表示任务被加压,用红色表示 

614. flink可以监控正在运行的作业的状态和统计信息,和完成的作业,用rest api表示。默认监听8081,可在rest.port配置。它和web仪表盘服务器在同一端口

615. rest api在flink-runtime中,具体是runtime.webmonitor.WebMonitorEndpoint,用netty和netty router库来处理rest请求。相关接口包括MessageHeaders、AbstractRestHandler等,实例有JobExceptionsHandler和JobExceptionHeaders

616. rest api具体分为/cluster、/config、/jars、/jobmanager、/jobs、/overview、/savepoint-disposal、/taskmanagers,其中/jobs下的url最多

617. /jobs可以取消job(用cancel)、使用保存点取消job(用cancel-with-savepoint) ;/jars可以上传jar(用post)

618. 可用currentLowWatermark监控最低水印,表示当前事件时间,该值由上游算子收到的所有水印的最小值来计算。

619. flink的类加载包括,java类路径(jdk库、flink依赖的库),和动态用户代码(动态提交的作业);来自会话(rest/cli)提交的作业的类都是动态加载的

620. yarn的类加载情况:当直接向y

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: Spark Streaming 和 Flink 都是流处理框架,但在一些方面有所不同。 1. 数据处理模型 Spark Streaming 基于批处理模型,将流数据分成一批批进行处理。而 Flink 则是基于流处理模型,可以实时处理数据流。 2. 窗口处理 Spark Streaming 的窗口处理是基于时间的,即将一段时间内的数据作为一个窗口进行处理。而 Flink 的窗口处理可以基于时间和数据量,可以更加灵活地进行窗口处理。 3. 状态管理 Spark Streaming 的状态管理是基于 RDD 的,需要将状态存储在内存中。而 Flink 的状态管理是基于内存和磁盘的,可以更加灵活地管理状态。 4. 容错性 Flink 的容错性比 Spark Streaming 更加强大,可以在节点故障时快速恢复,而 Spark Streaming 则需要重新计算整个批次的数据。 总的来说,Flink 在流处理方面更加强大和灵活,而 Spark Streaming 则更适合批处理和数据仓库等场景。 ### 回答2: Spark Streaming 和 Flink 都是流处理框架,它们都支持低延迟的流处理和高吞吐量的批处理。但是,它们在处理数据流的方式和性能上有许多不同之处。下面是它们的详细比较: 1. 处理模型 Spark Streaming 采用离散化流处理模型(DPM),将长周期的数据流划分为离散化的小批量,每个批次的数据被存储在 RDD 中进行处理,因此 Spark Streaming 具有较好的容错性和可靠性。而 Flink 采用连续流处理模型(CPM),能够在其流处理过程中进行事件时间处理和状态管理,因此 Flink 更适合处理需要精确时间戳和状态管理的应用场景。 2. 数据延迟 Spark Streaming 在处理数据流时会有一定的延迟,主要是由于对数据进行缓存和离散化处理的原因。而 Flink 的数据延迟比 Spark Streaming 更低,因为 Flink 的数据处理和计算过程是实时进行的,不需要缓存和离散化处理。 3. 机器资源和负载均衡 Spark Streaming 采用了 Spark 的机器资源调度和负载均衡机制,它们之间具有相同的容错和资源管理特性。而 Flink 使用 Yarn 和 Mesos 等分布式计算框架进行机器资源调度和负载均衡,因此 Flink 在大规模集群上的性能表现更好。 4. 数据窗口处理 Spark Streaming 提供了滑动、翻转和窗口操作等灵活的数据窗口处理功能,可以使用户更好地控制数据处理的逻辑。而 Flink 也提供了滚动窗口和滑动窗口处理功能,但相对于 Spark Streaming 更加灵活,可以在事件时间和处理时间上进行窗口处理,并且支持增量聚合和全量聚合两种方式。 5. 集成生态系统 Spark Streaming 作为 Apache Spark 的一部分,可以充分利用 Spark 的分布式计算和批处理生态系统,并且支持许多不同类型的数据源,包括Kafka、Flume和HDFS等。而 Flink 提供了完整的流处理生态系统,包括流SQL查询、流机器学习和流图形处理等功能,能够灵活地适应不同的业务场景。 总之,Spark Streaming 和 Flink 都是出色的流处理框架,在不同的场景下都能够发挥出很好的性能。选择哪种框架取决于实际需求和业务场景。 ### 回答3: Spark Streaming和Flink都是流处理引擎,但它们的设计和实现方式有所不同。在下面的对比中,我们将比较这两种流处理引擎的主要特点和差异。 1. 处理模型 Spark Streaming采用离散流处理模型,即将数据按时间间隔分割成一批一批数据进行处理。这种方式可以使得Spark Streaming具有高吞吐量和低延迟,但也会导致数据处理的粒度比较粗,难以应对大量实时事件的高吞吐量。 相比之下,Flink采用连续流处理模型,即数据的处理是连续的、实时的。与Spark Streaming不同,Flink的流处理引擎能够应对各种不同的实时场景。Flink的实时流处理能力更强,因此在某些特定的场景下,它的性能可能比Spark Streaming更好。 2. 窗口计算 Spark Streaming内置了许多的窗口计算支持,如滑动窗口、滚动窗口,但支持的窗口计算的灵活性较低,只适合于一些简单的窗口计算。而Flink的窗口计算支持非常灵活,可以支持任意窗口大小或滑动跨度。 3. 数据库支持 在处理大数据时,存储和读取数据是非常重要的。Spark Streaming通常使用HDFS作为其数据存储底层的系统。而Flink支持许多不同的数据存储形式,包括HDFS,以及许多其他开源和商业的数据存储,如Kafka、Cassandra和Elasticsearch等。 4. 处理性能 Spark Streaming的性能比Flink慢一些,尤其是在特定的情况下,例如在处理高吞吐量的数据时,在某些情况下可能受制于分批处理的架构。Flink通过其流处理模型和不同的调度器和优化器来支持更高效的实时数据处理。 5. 生态系统 Spark有着庞大的生态系统,具有成熟的ML库、图处理库、SQL框架等等。而Flink的生态系统相对较小,但它正在不断地发展壮大。 6. 规模性 Spark Streaming适用于规模小且不太复杂的项目。而Flink可扩展性更好,适用于更大、更复杂的项目。Flink也可以处理无限制的数据流。 综上所述,Spark Streaming和Flink都是流处理引擎,它们有各自的优缺点。在选择使用哪一个流处理引擎时,需要根据实际业务场景和需求进行选择。如果你的业务场景较为复杂,需要处理海量数据并且需要比较灵活的窗口计算支持,那么Flink可能是更好的选择;如果你只需要简单的流处理和一些通用的窗口计算,Spark Streaming是更为简单的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值