opencv中边缘提取、孔洞填充以及阈值分割的实际应用

1、应用中使用的opencv接口

1.1 阈值分割(threshold)

      threshold 函数参数介绍

 double threshold( InputArray src, OutputArray dst,double thresh, double maxval, int type );

      第一个参数为输入的图像,Mat类型的即可。

      第二个参数为输出图像,且和输入图像有同等大小和类型

      第三个参数为设定阙值的具体值

      第四个参数 maxval是当第五个参数类型为CV_THRESH_BINARY和CV_THRESH_BINARY_INV是的最大值

1.2边缘提取

void Canny(Mat image, Mat edges,double threshold1,double threshold2, int aperture_size=3);

   

1.3孔洞填充(findContours)

void findContours( InputOutputArray image, OutputArrayOfArrays contours,OutputArray hierarchy, int mode,int method, Point offset=Point())

使用findContours会同步使用findContours()与边缘检测算法

 

2、待分割图片

带分割图片如下,需要将图片中的小章鱼都分割出来

对图片的处理是先将图片进行颜色空间转换,有RGB转换成为HSV,再基于HSV的图片进行分割;下面三张图分别是进行颜色空间转换、边缘提取、以及孔洞填充后的效果,因为轮廓选择的时候不理想,所以最终分割的效果不好。后面会根据轮廓提取后的效果进一步分割;

以上分割效果不好,后期的处理更偏向于像素的处理,分析样本中蓝色的像素值,把蓝色的区域去掉,代码示例如下:

#include <iostream>
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;


void fillholds(Mat &src, Mat &dst, Mat &sourceImage)
{
	Mat m_with_border;
	copyMakeBorder(src, m_with_border, 1, 1, 1, 1, BORDER_CONSTANT, Scalar());
	copyMakeBorder(sourceImage, sourceImage, 1, 1, 1, 1, BORDER_CONSTANT, Scalar());

	vector<vector<Point>> contours;
	vector<Vec4i> hierarchy;

	// 提取边缘坐标
	findContours(m_with_border, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_NONE);

	Mat cvImg;
	sourceImage.copyTo(cvImg);
	if (!contours.empty())
	{
		for (unsigned int idx = 0; idx < contours.size(); idx++)
		{
			drawContours(cvImg, contours, idx, Scalar::all(0), CV_FILLED, 8);
		}
	}

	Mat resImage = cvImg(Rect(1, 1, m_with_border.cols - 2, m_with_border.rows - 2));

	
	//使用孔洞填充的时候部分区域提取异常,对提取异常的区域重新
	Mat mask = resImage(Rect(0, 0, 230, resImage.rows));
	for (int i = 0; i < mask.rows; i++)
	{
		uchar *ptR = resImage.ptr<uchar>(i);
		uchar *ptS = sourceImage.ptr<uchar>(i);
		for (int j = 0; j < mask.cols; j++)
		{
			// 还处理分割失败已经边缘黑色区域
			if (ptR[j * 3 + 2] == 0 && ptR[j * 3 + 1] == 0 && ptR[j * 3] == 0)
			{
				ptR[j * 3] = ptS[j * 3];
				ptR[j * 3 + 1] = ptS[j * 3 + 1];
				ptR[j * 3 + 2] = ptS[j * 3 + 2];
			}

			// 再对最后一个章鱼进行分割
			if (ptR[j * 3 + 2] > 150)
			{
				ptR[j * 3] = 0;
				ptR[j * 3 + 1] = 0;
				ptR[j * 3 + 2] = 0;
			}
		}
	}

	// 对部分比分割不好的进行形态学变换
	Mat ele = getStructuringElement(MORPH_RECT, Size(3, 3));
	morphologyEx(resImage, resImage, MORPH_ERODE, ele);

	dst = resImage;

}


int main()
{

	string sPath = "C:\\Users\\Administrator\\Desktop\\img\\segment.png";
	Mat src = imread(sPath);
	Mat srcimg;
	src.copyTo(srcimg);
	Mat hsvSrc;
	cvtColor(src, hsvSrc, CV_BGR2HSV);

	Mat showImg(src.rows * 2, src.cols * 2, CV_8UC3);


	vector<Mat> vImg;
	split(hsvSrc, vImg);

	Mat img1 = vImg[0];

	Mat cannyBoredr;
	Canny(vImg[0], cannyBoredr, 60, 180, 3);

	Mat mask;
	threshold(cannyBoredr, mask, 0, 255, THRESH_OTSU);

	Mat dst1;
	fillholds(mask, dst1, srcimg);

	// 使用直接减的方式会将上一步形态学变换的部分区域显示出来,达不到最好的效果
	Mat resultImage = src - dst1;

	// 使用二次分割的方式再进行一次提取
	Mat segImg(dst1.rows, dst1.cols,CV_8UC3);
	segImg = Scalar(0);
	for (int i = 0; i < segImg.rows; i++)
	{
		uchar *ptR = segImg.ptr<uchar>(i);
		uchar *ptS = src.ptr<uchar>(i);
		uchar *ptB = dst1.ptr<uchar>(i);
		for (int j = 0; j < segImg.cols; j++)
		{
			if (ptB[j * 3]	< 50)
			{
				ptR[j * 3] = ptS[j * 3];
				ptR[j * 3 + 1] = ptS[j * 3 + 1];
				ptR[j * 3 + 2] = ptS[j * 3 + 2];
			}
		}
	}

	system("pause");
	return 0;
}


代码处理中的中间图如下,第一张图是轮廓提取后的效果图,可以明显看见,左侧的小章鱼分割失败,此时就需要对这个小章鱼进行额外提取;第二张图是根据像素值分割后的掩码结果;由于掩码图经过膨胀炒作,所以直接使用原图减mask图就出现第三张图的效果;最后一张是基于像素重新处理后的图片,分割效果较好。

上述只是介绍了边缘提取、孔洞填充的使用,代码可读性比较差,后续重构;

https://mp.csdn.net/editor/html?spm=1010.2135.3001.5352

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值