深度学习
运控与机器视觉
从事FPGA和硬件开发10余年;对工业以太网,运动控制,工业机器视觉行业较为熟悉。请教问题前,请先打赏,谢谢!
展开
-
深度学习的相关基础概念和重要点 LENET5
池化层 即下采样层,池化操作就是图像的resize,池化层用的方法有Max pooling 和 average pooling,而实际用的较多的是Max pooling。 过拟合 模型泛化能力原创 2020-09-22 09:16:22 · 163 阅读 · 0 评论 -
FPGA深度学习精华
虽然现在深度学习的算法越来越高级,越来越牛逼,但是对于我们FPGA实现来说,没啥进步! 因为,这些越来越高级的算法,都是为了在PC上训练或实现而设计的,很多搜索结构并不适合FPGA实现! 那么,当前阶段FPGA实现深度学习有两种思路: 思路1:继续跟着这些高级的算法,编写相应结构的深度学习。出现的问题:结构实现难度太大;结构稍微变化,FPGA就要跟着改,难度高;应用场景有限,太单一。 思路2:做平台性的深度学习,好处是应用场景广泛,FPGA结构修改小,实现较为简单。具体结构可参考len...原创 2020-09-21 14:55:44 · 1039 阅读 · 0 评论 -
FPGA在深度学习中的优势总结
网友的观点:目前的机器学习任务都在使用 32 位密度矩阵乘法,这是GPU占优势的领域。FPGA的优势:重构机器学习,因为FPGA可以适应向低精度的转变。原创 2020-09-18 11:13:19 · 1020 阅读 · 0 评论 -
传统图像算法与机器学习
我提出一个观点,以供讨论:在机器视觉标检的项目中,模板生成其实也是一种机器学习。如果上位机给个初始模板,这种方法就叫监督学习;如果上位机不给初始模板,FPGA自己不断更新模板,这个叫非监督学习。显然,我们目前需要的是监督学习,非监督学习不适合(因为你无法保证第一张图是无缺陷的,也就是无法保证第一个模板的正确性,也就无法保证后面的图像是否是真正的背景来进入模板)...原创 2020-08-20 09:07:05 · 463 阅读 · 0 评论 -
深度学习大概情况和FPGA移植准备
人工智能->机器学习->神经网络 深度网络优势:性能更好,更节约资源 神经元:权重+激活函数,可拟合任何线性函数原创 2020-08-19 12:17:22 · 819 阅读 · 0 评论 -
第一篇——序,为什么要使用深度学习?
身边的技术人员,很多从事深度学习的,听来听去,5年有余了,一直也找不到产品,来弄下深度学习!现在终于有个机会来弄弄深度学习!研发的产品,就是做个类似海康的,但是针对细分行业的:针对深度学习,此刻的认知还比较肤浅,希望通过接下来的学习,能够熟悉起来。目前,仅知道两点:1)深度学习有两部分构成:训练+执行。之前玩过opencv的LBP人脸识别,有那么一点印象。2)深度学习里面有卷积,这个结构对于我做FPGA的再熟悉不过了。因为我这些年做图像算法,用这个结构用的比较多。接下来.原创 2020-08-17 09:19:55 · 187 阅读 · 0 评论