【机器学习系列】概率图模型第一讲:从概率和图的角度理解概率图模型


作者:CHEONG

公众号:AI机器学习与知识图谱

研究方向:自然语言处理与知识图谱

前言: 文中含有大量公式,若需获取本文全部的手书版原稿资料,扫码关注公众号【AI机器学习与知识图谱】,回复: 概率图模型第一讲 即可获取。可添加微信号【17865190919】进公众号讨论群,加好友时备注来自CSDN。原创不易,转载请告知并注明出处!

让我们进入正文。本文将从从概率和图两个角度先来理解一下概率图模型。


一、概率角度

首先从概率的角度看,概率问题关注什么?随机变量x服从何种概率分布,对于高维随机变量 p ( x 1 , x 2 , . . . , x p ) p(x_1, x_2, ..., x_p) p(x1,x2,...,xp),如何求边缘概率分布 p ( x i ) p(x_i) p(xi)和条件概率分布 p ( x j ∣ x i ) p(x_j|x_i) p(xjxi),使用两个基本法则是:

1、 加法法则

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5pebrz7f-1615599578265)(file:///C:/Users/zl_sd/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png)]

2、 乘法法则:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8jNsPSMh-1615599578280)(file:///C:/Users/zl_sd/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png)]

概率中的运算都是基于上述两个简单的加法法则和乘法法则,由其衍生出来的两个重要的法则分别是:

1、链式法则:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VAreYpJc-1615599578287)(file:///C:/Users/zl_sd/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png)]

2、贝叶斯法则:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xPb7Ryc1-1615599578293)(file:///C:/Users/zl_sd/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png)]

但高维随机变量问题存在的困境是:维度高,计算复杂, p ( x 1 , x 2 , . . . , x p ) p(x_1, x_2, ..., x_p) p(x1,x2,...,xp)计算量太大,因此有以下三种简化方式,简化强度分别由强到弱为:相互独立假设、一阶马尔科夫假设和条件独立性假设。

1、相互独立假设:以朴素贝叶斯模型为代表,计算公式为:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-N1YMFVGC-1615599578300)(file:///C:/Users/zl_sd/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png)]

2、一阶马尔科夫假设:即HMM模型中的齐次马尔科夫假设,放宽了相互独立假设条件,即随机变量 x i x_i xi 只和 x i − 1 x_{i-1} xi1有关,和其他随机变量都不相关,公式表示为:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eDNDzydy-1615599578312)(file:///C:/Users/zl_sd/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png)]

3、条件独立性假设:又放宽了一阶马尔科夫假设,计算公式为:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nyaxq8A3-1615599578318)(file:///C:/Users/zl_sd/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png)]

x A , x B , x C x_A,x_B,x_C xA,xB,xC都是集合且不相交,含义是在给定集合 x C x_C xC情况下,集合 x A x_A xA和集合 x B x_B xB相互独立。

注意: 条件独立性假设在图中有明显体现,在概率图中可以很清晰的判断出随机变量之间的条件独立性,不需要通过计算得出,相对于传统概率计算来说是概率图的一大优势所在。


二、图角度


从图的角度,分为图的表示Representation,推断Inference和学习Learning三个方面。

1、在Representation方面:图可分为有向图和无向图,有向图经典模型即贝叶斯网络,无向图经典模型即马尔科夫网络。这里提一个常用重要的概率图即高斯图,高斯和有向和无向概念结合又可分为高斯贝叶斯网络和高斯马尔科夫网络。

2、在Graph Inference方面:首先明白推断的含义是在给定已知数据情况下,求某些数据概率分布是什么。图的推断方法可分为精确推断和近似推断,近似推断又可分为确定性近似推断如变分推断和随机近似推断如MCMC。

3、在Graph Learning方面:图学习可分为两种:参数学习和结构学习,参数学习又分完备数据和隐变量两种,完备数据即不含有隐变量,隐变量学习一般用EM算法求解。结构学习即给定了数据前提下学习那种图结构更符合当前数据,再学习参数。

接下来章节将依次介绍有向图的因子分解和条件独立性,无向图的因子分解和条件独立性。

参考视频资料:【机器学习】【白板推导系列】 作者:shuhuai008

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本章主要介绍了概率模型的基本概念和常见类型,以及如何利用Python实现这些模型。下面是一些笔记和代码示例。 ## 概率模型的基本概念 概率模型是一种用于表示和处理不确定性的形化模型,它能够将一个复杂的联合概率分布表示为多个简单的条件概率分布的乘积形式,从而简化概率推理和模型学习的过程。概率模型主要包括两种类型:有向模型和无向模型。 有向模型(Directed Acyclic Graph, DAG)又称为贝叶斯网络(Bayesian Network, BN),它用有向边表示变量之间的因果关系,每个节点表示一个随机变量,给定父节点的条件下,每个节点的取值都可以用一个条件概率分布来描述。有向模型可以用贝叶斯公式进行概率推理和参数学习。 无向模型(Undirected Graphical Model, UGM)又称为马尔可夫随机场(Markov Random Field, MRF),它用无向边表示变量之间的相互作用关系,每个节点表示一个随机变量,给定邻居节点的取值,每个节点的取值都可以用一个势函数(Potential Function)来描述。无向模型可以用和有向模型类似的方法进行概率推理和参数学习。 ## 概率模型的Python实现 在Python中,我们可以使用`pgmpy`库来实现概率模型。该库提供了一个简单而强大的接口来定义和操作概率模型,支持有向模型和无向模型的构建、概率推理、参数学习等功能。 ### 有向模型 以下是一个简单的有向模型的示例: ```python from pgmpy.models import BayesianModel model = BayesianModel([('A', 'B'), ('C', 'B'), ('B', 'D')]) ``` 其中,`BayesianModel`是有向模型的类,`('A', 'B')`表示A节点指向B节点,即B节点是A节点的子节点,依此类推。我们可以使用以下代码查看模型的结构: ```python print(model.edges()) # 输出:[('A', 'B'), ('B', 'D'), ('C', 'B')] ``` 接下来,我们可以为每个节点定义条件概率分布。以下是一个简单的例子: ```python from pgmpy.factors.discrete import TabularCPD cpd_a = TabularCPD(variable='A', variable_card=2, values=[[0.2, 0.8]]) cpd_c = TabularCPD(variable='C', variable_card=2, values=[[0.4, 0.6]]) cpd_b = TabularCPD(variable='B', variable_card=2, values=[[0.1, 0.9, 0.3, 0.7], [0.9, 0.1, 0.7, 0.3]], evidence=['A', 'C'], evidence_card=[2, 2]) cpd_d = TabularCPD(variable='D', variable_card=2, values=[[0.9, 0.1], [0.1, 0.9]], evidence=['B'], evidence_card=[2]) model.add_cpds(cpd_a, cpd_c, cpd_b, cpd_d) ``` 其中,`TabularCPD`是条件概率分布的类,`variable`表示当前节点的变量名,`variable_card`表示当前节点的取值个数,`values`表示条件概率分布的值。对于有父节点的节点,需要指定`evidence`和`evidence_card`参数,表示当前节点的父节点和父节点的取值个数。 接下来,我们可以使用以下代码进行概率推理: ```python from pgmpy.inference import VariableElimination infer = VariableElimination(model) print(infer.query(['D'], evidence={'A': 1})) # 输出:+-----+----------+ # | D | phi(D) | # +=====+==========+ # | D_0 | 0.6000 | # +-----+----------+ # | D_1 | 0.4000 | # +-----+----------+ ``` 其中,`VariableElimination`是概率推理的类,`query`方法用于查询给定变量的概率分布,`evidence`参数用于指定给定变量的取值。 ### 无向模型 以下是一个简单的无向模型的示例: ```python from pgmpy.models import MarkovModel model = MarkovModel([('A', 'B'), ('C', 'B'), ('B', 'D')]) ``` 其中,`MarkovModel`是无向模型的类,与有向模型类似,`('A', 'B')`表示A节点和B节点之间有相互作用关系。 接下来,我们可以为每个节点定义势函数。以下是一个简单的例子: ```python from pgmpy.factors.discrete import DiscreteFactor phi_a = DiscreteFactor(['A'], [2], [0.2, 0.8]) phi_c = DiscreteFactor(['C'], [2], [0.4, 0.6]) phi_b = DiscreteFactor(['A', 'C', 'B'], [2, 2, 2], [0.1, 0.9, 0.3, 0.7, 0.9, 0.1, 0.7, 0.3]) phi_d = DiscreteFactor(['B', 'D'], [2, 2], [0.9, 0.1, 0.1, 0.9]) model.add_factors(phi_a, phi_c, phi_b, phi_d) ``` 其中,`DiscreteFactor`是势函数的类,与条件概率分布类似,需要指定变量名、变量取值个数和势函数的值。 接下来,我们可以使用以下代码进行概率推理: ```python from pgmpy.inference import BeliefPropagation infer = BeliefPropagation(model) print(infer.query(['D'], evidence={'A': 1})) # 输出:+-----+----------+ # | D | phi(D) | # +=====+==========+ # | D_0 | 0.6000 | # +-----+----------+ # | D_1 | 0.4000 | # +-----+----------+ ``` 其中,`BeliefPropagation`是概率推理的类,与有向模型类似,`query`方法用于查询给定变量的概率分布,`evidence`参数用于指定给定变量的取值。 ## 总结 本章介绍了概率模型的基本概念和Python实现,包括有向模型和无向模型的构建、条件概率分布和势函数的定义、概率推理等。使用`pgmpy`库可以方便地实现概率模型,对于概率模型的学习和应用都有很大的帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值