【机器学习系列】概率图模型第二讲:深入浅出有向图中的条件独立性和D划分


作者:CHEONG

公众号:AI机器学习与知识图谱

研究方向:自然语言处理与知识图谱

前言: 文中含有大量公式,若需获取本文全部的手书版原稿资料,扫码关注公众号【AI机器学习与知识图谱】,回复: 概率图模型第二讲 即可获取。可添加微信号【17865190919】进公众号讨论群,加好友时备注来自CSDN。原创不易,转载请告知并注明出处!

上一章节中介绍了相对独立假设,齐次马尔科夫假设以及条件独立性假设,得出一个结论就是:概率图具有条件独立特性,根据一个构建好的概率图可以直接得出节点集合之间的条件独立性,也就是随机变量集合之间的条件独立性。用公式表示为 X A ⊥ X B ∣ X C X_A \bot X_B | X_C XAXBXC,其中 X A , X B , X C X_A,X_B,X_C XA,XB,XC都是图中节点的集合。本节将介绍有向图的联合概率分布和条件独立性。


一、有向图联合概率分布

首先有向图的随机变量联合概率分布很容易写出来,参考如下公式,其中 X p a ( i ) X_{pa(i)} Xpa(i) X i X_i Xi的父节点:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cDMcpyKx-1615601704535)(file:///C:/Users/zl_sd/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png)]

二、有向图的条件独立性

下面首先通过三个有向图的例子理解一下有向图是如何得出随机变量之间的条件独立性。

例子1: 如下图所示,节点a是head节点,节点b和c都是tail节点,为方便起见,将下图称为tail-to-tail模式。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hosh7R36-1615601704539)(file:///C:/Users/zl_sd/AppData/Local/Temp/msohtmlclip1/01/clip_image012.jpg)]

先给出结论: 在给定节点a的情况下,b和c相互独立,即: c ⊥ b ∣ a c \bot b | a cba,下面通过推导证明该结论的正确性。

首先根据上图可以写出其对应的联合概率分布为:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TmHhRieo-1615601704543)(file:///C:/Users/zl_sd/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png)]

而链式法则始终是成立的:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-aB7SHOv8-1615601704549)(file:///C:/Users/zl_sd/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png)]

根据以上两个公式可以进行推导:

在这里插入图片描述

根据推导出的 p ( b , c ∣ a ) = p ( c ∣ a ) p ( b ∣ a ) p(b,c|a)=p(c|a)p(b|a) p(b,ca)=p(ca)p(ba)可以直接得出条件独立性性质: c ⊥ b ∣ a c \bot b | a cba,即在给定a的情况下b和c相互独立。因此下次出现上图tail-to-tail模式有向图可以直接得出结论 c ⊥ b ∣ a c \bot b | a cba

例子2: 如下有向图,a是head结点,b和c都是tail节点,为了方便将下图结构称为head-to-tail模式:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wg1CBvhi-1615601704565)(file:///C:/Users/zl_sd/AppData/Local/Temp/msohtmlclip1/01/clip_image028.jpg)]

先给出结论:在给定节点b情况下,a和c是相互独立的,即 a ⊥ c ∣ b a \bot c | b acb,证明方式和例子1相同,首先可以写出图对应的联合概率分布为:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GXmHHi08-1615601704568)(file:///C:/Users/zl_sd/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png)]

再结合链式法则便可推导出用例子1同样方式可以得出: p ( a , c ∣ b ) = p ( c ∣ b ) p ( a ∣ b ) p(a,c|b)=p(c|b)p(a|b) p(a,cb)=p(cb)p(ab),因此可得出结论在b被观测的情况下,a和c是相互独立的,即 a ⊥ c ∣ b a \bot c | b acb

例子3: 第三种情况相对比较特殊,如下有向图,节点a,b都是head节点,节点c是tail节点,为了方便起见将下图称为head-to-head模式:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7JHax51e-1615601704572)(file:///C:/Users/zl_sd/AppData/Local/Temp/msohtmlclip1/01/clip_image036.jpg)]

先给出结论:在默认情况下节点a和b是相互独立的,而当节点c被观测时,则a和b相关互不独立。我们可以这么想,a和b是夫妻,c是孩子,在没有孩子c之前a和b不认识是相互独立的,当有了孩子c之后a和b就不再独立了。下面通过推导证明。

首先可以写出上图对应的联合概率分布为:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7iwAcxqj-1615601704576)(file:///C:/Users/zl_sd/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png)]

结合根据链式法则有: p ( a , b , c ) = p ( a ) p ( b ∣ a ) p ( c ∣ a , b ) p(a,b,c)=p(a)p(b|a)p(c|a,b) p(a,b,c)=p(a)p(ba)p(ca,b),根据以上两个公式可以得出: p ( b ) = p ( b ∣ a ) p(b)=p(b|a) p(b)=p(ba),因此可以看出默认情况下,a和b确实是相互独立的。

延伸知识: 若c的所有后继节点如果被观测,则节点a和b也将相关互不独立。

接下来引出有向图的D-划分,D-划分方法可以得到有向图中相互条件独立的随机变量集合,下面看D-划分规则。


三、有向图的D-划分

D-Seperation的两条核心规则,D划分规则又被称为全局Markov性。如果在下面有向图中,在集合 X B X_B XB被观测情况下,集合 X A X_A XA和集合 X C X_C XC相互独立,则必须满足以下两条:

规则1: 节点a属于集合 X A X_A XA,节点c属于集合 X C X_C XC,如下图所示,若存在节点 b 1 b_1 b1和节点a,c之间满足上述介绍的head-to-tail模式,则节点 b 1 b_1 b1必须在集合 X B X_B XB内。同理若节点 b 2 b_2 b2和节点a,c之间满足上述介绍的tail-to-tail模式,则节点 b 2 b_2 b2必须在集合 X B X_B XB内。

规则2: 若现有节点 b ∗ b_* b和节点a,c之间满足head-to-head模式,则节点 b ∗ b_* b必须在集合 X B X_B XB之外,同时节点 b ∗ b_* b的后继节点也必须在集合 X B X_B XB之外。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ejjw8XuE-1615601704580)(file:///C:/Users/zl_sd/AppData/Local/Temp/msohtmlclip1/01/clip_image054.jpg)]

同时根据上述两个D-Seperation规则,也可以在有向图中找出满足条件独立性的集合。

下一章节将介绍概率图中无向图中的条件独立性和无向图因式分解方法。


参考视频资料:【机器学习】【白板推导系列】 作者:shuhuai008

参考书籍资料:Pattern Recognition and Machine Learning 作者:[Christopher Bishop](https://book.douban.com/search/Christopher Bishop)

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
本章主要介绍了概率图模型的基本概念和常见类型,以及如何利用Python实现这些模型。下面是一些笔记和代码示例。 ## 概率图模型的基本概念 概率图模型是一种用于表示和处理不确定性的形化模型,它能够将一个复杂的联合概率分布表示为多个简单的条件概率分布的乘积形式,从而简化概率推理和模型学习的过程。概率图模型主要包括两种类型:有向图模型和无向模型。 有向图模型(Directed Acyclic Graph, DAG)又称为贝叶斯网络(Bayesian Network, BN),它用有向边表示变量之间的因果关系,每个节点表示一个随机变量,给定父节点的条件下,每个节点的取值都可以用一个条件概率分布来描述。有向图模型可以用贝叶斯公式进行概率推理和参数学习。 无向模型(Undirected Graphical Model, UGM)又称为马尔可夫随机场(Markov Random Field, MRF),它用无向边表示变量之间的相互作用关系,每个节点表示一个随机变量,给定邻居节点的取值,每个节点的取值都可以用一个势函数(Potential Function)来描述。无向模型可以用和有向图模型类似的方法进行概率推理和参数学习。 ## 概率图模型的Python实现 在Python,我们可以使用`pgmpy`库来实现概率图模型。该库提供了一个简单而强大的接口来定义和操作概率图模型,支持有向图模型和无向模型的构建、概率推理、参数学习等功能。 ### 有向图模型 以下是一个简单的有向图模型的示例: ```python from pgmpy.models import BayesianModel model = BayesianModel([('A', 'B'), ('C', 'B'), ('B', 'D')]) ``` 其,`BayesianModel`是有向图模型的类,`('A', 'B')`表示A节点指向B节点,即B节点是A节点的子节点,依此类推。我们可以使用以下代码查看模型的结构: ```python print(model.edges()) # 输出:[('A', 'B'), ('B', 'D'), ('C', 'B')] ``` 接下来,我们可以为每个节点定义条件概率分布。以下是一个简单的例子: ```python from pgmpy.factors.discrete import TabularCPD cpd_a = TabularCPD(variable='A', variable_card=2, values=[[0.2, 0.8]]) cpd_c = TabularCPD(variable='C', variable_card=2, values=[[0.4, 0.6]]) cpd_b = TabularCPD(variable='B', variable_card=2, values=[[0.1, 0.9, 0.3, 0.7], [0.9, 0.1, 0.7, 0.3]], evidence=['A', 'C'], evidence_card=[2, 2]) cpd_d = TabularCPD(variable='D', variable_card=2, values=[[0.9, 0.1], [0.1, 0.9]], evidence=['B'], evidence_card=[2]) model.add_cpds(cpd_a, cpd_c, cpd_b, cpd_d) ``` 其,`TabularCPD`是条件概率分布的类,`variable`表示当前节点的变量名,`variable_card`表示当前节点的取值个数,`values`表示条件概率分布的值。对于有父节点的节点,需要指定`evidence`和`evidence_card`参数,表示当前节点的父节点和父节点的取值个数。 接下来,我们可以使用以下代码进行概率推理: ```python from pgmpy.inference import VariableElimination infer = VariableElimination(model) print(infer.query(['D'], evidence={'A': 1})) # 输出:+-----+----------+ # | D | phi(D) | # +=====+==========+ # | D_0 | 0.6000 | # +-----+----------+ # | D_1 | 0.4000 | # +-----+----------+ ``` 其,`VariableElimination`是概率推理的类,`query`方法用于查询给定变量的概率分布,`evidence`参数用于指定给定变量的取值。 ### 无向模型 以下是一个简单的无向模型的示例: ```python from pgmpy.models import MarkovModel model = MarkovModel([('A', 'B'), ('C', 'B'), ('B', 'D')]) ``` 其,`MarkovModel`是无向模型的类,与有向图模型类似,`('A', 'B')`表示A节点和B节点之间有相互作用关系。 接下来,我们可以为每个节点定义势函数。以下是一个简单的例子: ```python from pgmpy.factors.discrete import DiscreteFactor phi_a = DiscreteFactor(['A'], [2], [0.2, 0.8]) phi_c = DiscreteFactor(['C'], [2], [0.4, 0.6]) phi_b = DiscreteFactor(['A', 'C', 'B'], [2, 2, 2], [0.1, 0.9, 0.3, 0.7, 0.9, 0.1, 0.7, 0.3]) phi_d = DiscreteFactor(['B', 'D'], [2, 2], [0.9, 0.1, 0.1, 0.9]) model.add_factors(phi_a, phi_c, phi_b, phi_d) ``` 其,`DiscreteFactor`是势函数的类,与条件概率分布类似,需要指定变量名、变量取值个数和势函数的值。 接下来,我们可以使用以下代码进行概率推理: ```python from pgmpy.inference import BeliefPropagation infer = BeliefPropagation(model) print(infer.query(['D'], evidence={'A': 1})) # 输出:+-----+----------+ # | D | phi(D) | # +=====+==========+ # | D_0 | 0.6000 | # +-----+----------+ # | D_1 | 0.4000 | # +-----+----------+ ``` 其,`BeliefPropagation`是概率推理的类,与有向图模型类似,`query`方法用于查询给定变量的概率分布,`evidence`参数用于指定给定变量的取值。 ## 总结 本章介绍了概率图模型的基本概念和Python实现,包括有向图模型和无向模型的构建、条件概率分布和势函数的定义、概率推理等。使用`pgmpy`库可以方便地实现概率图模型,对于概率模型的学习和应用都有很大的帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值