一步一步写算法(之大数计算)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/feixiaoxing/article/details/6856686

【 声明:版权所有,欢迎转载,请勿用于商业用途。  联系信箱:feixiaoxing @163.com】


    我们知道在x86的32位cpu上面,int表示32位,如果核算成整数的话,大约是40多亿。同样,如果在64位cpu上面,能表示的最大整数就是64位二进制,表示的数值要大得多。那么在32位如果想表示大整数怎么办呢?那只能靠我们自己想办法了。

    首先我们回顾一下我们手算整数的加减、乘除法是怎么做到的:

    (1)记住9*9之间的乘法口诀

    (2)记住个位与个位之间的加减法

    (3)所有乘法用加法和左移位表示,所有的减法用减法和右移位表示

    明白上面的道理之后,我们就可以自己手动写一个大整数的加法了:

int* big_int_add(int src1[], int length1, int src2[], int length2)
{
	int* dest = NULL;
	int length;
	int index;
	int smaller;
	int prefix = 0;

	if(NULL == src1 || 0 >= length1 || NULL == src2 || 0 >= length2)
		return NULL;

	length = length1 > length2 ? (length1 + 1) : (length2 + 1);
	dest = (int*)malloc(sizeof(int) * length);
	assert(NULL != dest);
	memset(dest, 0, sizeof(int) * length);

	smaller = (length2 < length1) ? length2 : length1;
	for(index = 0; index < smaller; index ++)
		dest[index] = src1[index] + src2[index];

	if(length1 > length2){
		for(; index < length1; index++)
			dest[index] = src1[index];
	}else{
		for(; index < length2; index++)
			dest[index] = src2[index];
	}

	for(index = 0; index < length; index ++){
		dest[index] += prefix; 
		prefix = dest[index] / 10;
		dest[index] %= 10;
	}

	return dest;
}
    上面算法最大的特点就是:计算的时候没有考虑10进制,等到所有结果出来之后开始对每一位进行进制处理。


讨论:

    看到上面的算法之后,大家可以考虑一下:

    (1)减法应该怎么写呢?

    (2)乘法呢?除法呢?


展开阅读全文

没有更多推荐了,返回首页