
SLAM从入门到精通
文章平均质量分 72
SLAM从入门到精通
嵌入式-老费
计算机科班出身,09年研究生毕业即投入嵌入式开发工作,欢迎付费咨询,微信联系:xiaoxing_fei。
展开
-
SLAM从入门到精通(SLAM落地的难点)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 在所有的slam算法中,基于反光柱的激光slam和基于二维码的视觉slam是落地最彻底的两种slam方法。和磁条、色带等传统导航方式相比较,它们最大的优点就是操作简单、部署灵活,不需要进行复杂的地面施工,就可以短时间内在客户现场应用起来。 到这里,很多人又发现了一个新的问题,实际使用的这些slam算法和我们读的论文算法,好像有很大的不同。就拿激光slam来说,大家学原创 2023-11-12 09:42:57 · 1137 阅读 · 0 评论 -
SLAM从入门到精通(光源的控制)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 前面我们说过,图像在二维码、道路检测、故障物检测方面都有很重要的作用。但是,这里面就有一个前提,那就是图像本身的质量必须是非常ok的。对于高质量的图像,即使用简单的算法,都可以得到不错的结果。而对于质量不高的图片,既费时又费力,得到的结果还不是非常理想的。 所以,到这里我们很自然而然地想到自己去补充光源。即,如果自然光很ok,那么可以通过减少曝光量地方法降低自然光的原创 2023-11-09 15:37:18 · 492 阅读 · 0 评论 -
SLAM从入门到精通(安全避障)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 在工业生产中,安全是底线。没有安全性的技术,一般也不会在工业生产中进行部署、使用。对于slam来说,同样也是这个道理。我们知道,slam本身依赖于传感器、依赖于算法、依赖于标定、也依赖于电机和机械部分,哪一部分出了问题,机器人都不会正常地工作。所以,对于机器人来说,在运动的过程中,如何安全稳定地去运行、及时检测和发现障碍物,这就显得非常重要了。 避障,顾名思义,就是原创 2023-11-08 07:59:34 · 712 阅读 · 0 评论 -
SLAM从入门到精通(车道线检测)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 对于slam而言,大家一般想到的就是去通过传感器找特征点,进而借助于特征点去定位机器人的位置。但是对于用户或者厂家来说,他们很多时候对机器人在道路上的精度不做要求,但对工位上的对接要求很高。所以,对于供应商来说,是不是整个定位和导航都需要借助于传感器或者反光柱,这就两说了。 此外,相比较室外而言,工厂内部的光源一般会好一点。就算条件不是很好,我们自己也可以通过补充光原创 2023-11-07 08:24:35 · 647 阅读 · 0 评论 -
SLAM从入门到精通(二维码识别)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 二维码是现在用的比较多的一种技术。通过二维码,人们不仅可以分享信息,而且可以购物、支付,都是非常方便的。同样,不仅仅是消费领域,其实在工业生产上,条形码、二维码这些技术同样可以扮演非常重要的角色。一方面,他们可以放在货物外包装上面,方便仓储和物流;另外一方面,可以装在地面上,用于导航和定位。总之,二维码技术是现在应用非常广泛、同时又相对比较低成本的一项技术。 目前,原创 2023-11-06 10:14:47 · 606 阅读 · 0 评论 -
SLAM从入门到精通(被忽视的基础图像处理)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 工业上用激光slam的多,用视觉slam的少,这是大家都知道的常识。毕竟对于工业来说,健壮和稳定是我们必须要考虑的事情。但是图像slam在这过程当中其实也可以扮演十分重要的角色,比如说地面如果非常有特征的话,黄色路面或者绿色路面。这个时候,即使全局的slam完成不了,那么也可以实现局部常见的slam导航。 ros里面其实也谈到了opencv,它是一个用的比较多的开发原创 2023-11-05 16:25:50 · 1525 阅读 · 0 评论 -
SLAM从入门到精通(参数标定)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 标定是slam开发过程中很重要的一个环节。这部分内容涉及到很多方面,比如说传感器、比如说算法、比如说机械,总之好的标定不仅仅决定了系统的稳定性,还对整个系统的性能产生很大的影响。以汽车行业为例,标定工程师早就是一个被广泛接受的职业类型。拿发动机来说,我们都知道现在的汽车一般都会有很多的工作模式,有经济型、舒适性和运动型这几种。其实,不管哪种模式,这发动机里面的算法都是一样的,只是不同原创 2023-11-04 08:03:21 · 782 阅读 · 0 评论 -
SLAM从入门到精通(计算点到直线的距离)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 大家一开始看到这个题目的时候,也许比较吃惊。为什么会有这样的题目?但是做过slam的同学,应该就比较熟悉和了解了。我们都知道,大部分机器人运动的时候,都是按照特定的轨迹进行移动的。这个时候,有一件非常重要的事情需要去做,那就是实时计算机器人和运动直线之间的距离。一方面,可以验证我们的slam效果好不好,另外一方面也可以在发生意外的时候,提前让机器人停止住,这样也能避免发生意外。原创 2023-11-03 14:55:38 · 1018 阅读 · 0 评论 -
SLAM从入门到精通(lidar的运动畸变矫正)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 前面我们说过,很多时候传感器的数据并不能直接拿过来使用。这里面除了噪声的原因之外,另外一部分原因就是传感器数据本身也有可能是脏数据,存在运动畸变的可能性。以激光雷达为例,假设一个机器人往前行走,速度是1m/s,lidar旋转的速度是10次/s。一开始的时候,lidar检测前面1m处有一个物体。那么100ms之后,同样的物体,其实这个时候距离只有0.9m了。如果lidar的裸数据没有经原创 2023-10-27 15:56:15 · 765 阅读 · 0 评论 -
SLAM从入门到精通(三边测量法详解)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 三边测量,或者说叫三角定位,是定位系统中很常见的一种测量方法。它最主要的原理就是依靠已有的三个特征坐标和半径,就可以计算出当前自己的坐标。听上去这么做很玄乎,其实相关的计算,用初中数学的知识就可以掌握。 首先我们假设三个特征坐标分别是(x1,y1)、(x2,y2)、(x3,y3),它们的半径分别是r1、r2、r3。已知的条件就这么多,下面就要求出(x,y)的坐标了。原创 2023-10-25 22:28:47 · 3133 阅读 · 1 评论 -
SLAM从入门到精通(基于ros的反光柱定位)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 我们看论文或者看书的时候,讲的最多的一般就是基于自然环境的定位。不管是激光雷达,还是视觉,其实本身还有很多的不确定性。而对企业、工厂来说,大部分情况下没有办法容忍这种不确定性的。所以很多时候,企业里面用的定位技术往往不是那么高大上的技术,比如激光就用反光柱,视觉就用二维码等等。这里反光柱定位多用于大型物流设备,也算是用的比较多的一种定位方法。 ros上面其他slam原创 2023-10-25 11:56:55 · 2780 阅读 · 1 评论 -
SLAM从入门到精通(robot上层软件开发)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 前面我们了解到,ros系统基本上都是依赖于ubuntu和linux来运行的。如果ros是只是跑在机器人的系统上面,不涉及到上层交互,这些都问题不大。但如果做成产品,发布出去,这样就会或多或少有点麻烦。因为大多数fae、或者客户,他们的系统都是windows系统,很少用linux系统。毕竟客户本身通常只是专注于自己的业务,如果是非专业人士,很少会涉及到linux系统。原创 2023-10-23 11:26:39 · 326 阅读 · 0 评论 -
SLAM从入门到精通(rviz自定义形状)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 rviz作为很好的上位机调试工具,它本身可以显示很多的传感器数据。比如说lidar、map、tf、camera、点云这些,在rviz上面显示都没有问题。但是有一些数据,我们其实是希望进行自定义显示的。以slam来讲,目前常见的slam就是激光slam和视觉slam。不管哪一种slam,环境的自然特征总没有人工设计的强特征来的稳定,激光slam的稳定特征就是反光柱,而视觉slam的稳定原创 2023-10-22 15:49:58 · 583 阅读 · 0 评论 -
SLAM从入门到精通(从仿真到实践)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 之前花了40多篇文章,弄清了什么是slam,怎么学习slam,什么是ros,怎么利用ros来学好slam等等。不仅如此,我们还搭建了仿真环境,从话题订阅和发布开始,一步步到gmapping、amcl到move base,中间确实涉及了很多的内容,知识点也比较多。但如果仅仅如此,其实还是不够的。仿真学习虽然对于学习者是比较方便的,但我们最终的目的还是希望能够把slam技术用起来,这样才原创 2023-10-21 12:18:00 · 647 阅读 · 0 评论 -
SLAM从入门到精通(构建自己的slam包)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 我们学习了很多的开源包,比如hector、gmapping。但其实我们也可以自己编写一个slam包。这么做最大的好处,主要还是可以帮助自己更好地去了解slam、掌握slam以及用好slam。就像学习rtos一样,使用好别人提供的api是一回事,自己会写rtos又是另外一回事。一旦我们自己会写rtos之后,那么其他所有的实时操作系统都是很容易掌握的。slam也是一样。原创 2023-10-20 08:14:09 · 688 阅读 · 0 评论 -
SLAM从入门到精通(利用数据集来离线制图)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 前面我们的测试大部分都是基于仿真来实现的。但是很多时候,我们其实希还是望自己的算法能够跑在真实场景的数据上。可问题来了,此刻我们自己既没有钱买机器人,也没有时间采集那么多数据,那么应该怎么办呢。所以,为了解决这个问题,我们想到一个很简单的办法,那就是去网上找符合格式的数据集来进行离线制图。这和我们当初为了学习opencv图像处理、深度学习,去网上找测试集是一个道理。原创 2023-10-18 21:18:00 · 384 阅读 · 0 评论 -
SLAM从入门到精通(dwa速度规划算法)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 要说搜路算法,这个大家都比较好理解。毕竟从一个地点走到另外一个地点,这个都是直觉上可以感受到的事情。但是这条道路上机器人应该怎么走,以什么样的速度、什么样的角速度走,这里面有很大的学问。一方面,机器人本身的机械特性决定了它的速度、角速度这些参数都有一定范围约束的;另外一方面,不同的速度、角速度走出来的轨迹可能是不一样的,特别是拐弯的时候。这个时候,什么样的轨迹最适合我们机器人,就需要原创 2023-10-18 00:21:11 · 1134 阅读 · 0 评论 -
SLAM从入门到精通(a*搜路算法)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 目前机器人常用的搜路算法主要有这么几种,迪杰斯特拉算法、a*算法、贪心算法。每一种算法都有自己的场景和优势,可以灵活选择。但一般来说,客户的场景不算很复杂的话,搜路算法越简单越好,只要能达到最终的目标即可。对于特别复杂的场景,建议也不要通过算法来解决业务的问题,这反而是得不偿失的。所以说,这三种算法,如果没有特别原因的话,最好都实现一下,这样方便fae的同学现场部署和实施。搜路算法本原创 2023-10-17 08:47:01 · 1136 阅读 · 0 评论 -
SLAM从入门到精通(bresenham绘制算法)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 前面我们说过,学术界和工业界对于slam的要求是不一样的。前者要求robot在运动的过程中,同步实现定位和制图的操作。但是工业界中,一般两者是分开来的。首先进行制图,一旦制图完成之后就专注于定位操作。但是这两者之间没有明显的差别。原创 2023-10-15 11:15:27 · 963 阅读 · 0 评论 -
SLAM从入门到精通(代码调试)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 前面的文章,我们学习了如何仿真、如何编译代码、如何写代码。但是如何调试这些代码,涉及的不是很多。因为如果要把ros真的用起来,真正服务于自己的项目当中去,代码调试肯定是少不了的。不管是添加新的功能、还是对性能进行优化,都少不了代码调试的部分。鉴于目前大部分ros都是运行在linux环境下面,所以我们一般都会选择gdb来进行代码调试。 为了说明如何用gdb调试,我们下原创 2023-10-14 17:22:29 · 440 阅读 · 0 评论 -
SLAM从入门到精通(数据回放工具之rosbag)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 前面我们学习了hector-slam、gmapping slam两种slam方法。当时我们操作的时候,是通过手动操作的方法来建图的。但是这里面可能存在一个问题,因为建图的时候,我们只能选择一种slam建图方法。如果我们想针对同一种场景用不同的slam算法,比较下它们的建图效果,这个时候就没有办法了。好在ros给我们提供了一个数据回放的工具,即rosbag。原创 2023-10-13 17:16:18 · 729 阅读 · 0 评论 -
SLAM从入门到精通(ROS网络通信)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 之前我们学习ros的时候,大部分都是基于仿真来做的。但是最终,我们还是要把ros部署到小车上的。这就带来一个问题,首先小车肯定是要上ros的,毕竟小车要行走在各个地方。然而,我们在本地也是需要对小车进行控制的。这种控制,有可能是调试,有可能是监控,也有可能是发送任务。不管怎么说,本地pc也是需要对小车进行通信的。另外,对于真正的使用者来说,他可能手里也有一个发送任务的android原创 2023-10-13 12:23:18 · 329 阅读 · 0 评论 -
SLAM从入门到精通(launch文件学习)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 大家应该还记得我们在一开始学习ros的时候,如果需要启动一个节点的话,需要首先打开roscore,接着用rosrun打开对应的节点。如果节点比较少的话,这种方法,倒也可以接受,但是节点一多就不太方便了。比如,我们之前在学习slam的时候,需要依次打开gazebo、rviz、slam、rqt等多个节点软件,这就非常麻烦了。所以为了解决这个问题,人们想出了roslaunch的办法,它不但原创 2023-10-11 23:50:03 · 697 阅读 · 0 评论 -
SLAM从入门到精通(3d 点云数据访问)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 3d 点云设备现在汽车上用的很多。之前3d lidar这种高端传感器,只能被少部分智能汽车使用。后来很多国产厂家也开始研发3d lidar之后,它的价格快速下跌下来,部分3d lidar的价格已经降到了几千元左右,实用性一下子就提升上来了。不管用它来做slam,还是用来检测物体、识别物体、避障检测,都是很方便的。所以,对于slam的同学来说,除了轮速编码器、imu、camera、单线原创 2023-10-10 16:57:13 · 677 阅读 · 0 评论 -
SLAM从入门到精通(camera数据读取)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 实际ros开发的时候,现场有很多特征都可以用来进行采集和标定。比如说地面,对于外资企业或者管理比较规范的企业来说,一般robot行驶区域都是非常有特点的。这个时候如果利用lidar的slam不好做,可以使用camera图像去补充进行相关的slam操作。二维码导航就是这么来的。当然,要做到这一点,光源控制必须得到很好的解决才行。 当然,上面说的都是slam,事实上原创 2023-10-10 13:53:58 · 413 阅读 · 0 评论 -
SLAM从入门到精通(ROS自主导航实验)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 关于ros导航的部分,网上的大部分内容要么过于理论,要么直接讲代码实现,门槛有点高。但是怎么让ros navigation用起来,或者说怎么让初学者看到ros导航的效果,这方面的文章很少。最近自己正好学习ros,并且结合视频网站上的一些介绍,学会了怎么使用ros navigation,正好可以写一篇文章简单介绍下。 要实现ros导航,最主要的是分成两个部分,第一就是原创 2023-10-10 08:41:17 · 3796 阅读 · 0 评论 -
SLAM从入门到精通(基于传感器的闭环控制仿真)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 前面我们对底盘做了控制,对传感器数据也进行了读取,但是目前为止还没有做过一个完整的ros仿真程序。在这仿真中,有必要既涉及传感器,也涉及底盘控制。所以,这里做一个简单的robot绕障系统。它的基本原理很简单,就是如果没有发现障碍物,那么小车就继续向前走。一旦发现障碍物,小车开始旋转。等到旋转一定的时间之后,继续向前行走。整个处理流程虽然比较简单,但是也符合基本的嵌入式开发思路。原创 2023-10-09 10:18:23 · 335 阅读 · 0 评论 -
SLAM从入门到精通(ROS和底盘Stm32的关系)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 学过Ros的同学,一般对subscribe、publish、话题、服务这些内容都比较熟悉。如果再熟悉一点的话,还会知道slam、move_base、moveit这些框架。再了解多一点的呢,会对框架里面的算法,比如和hector slam、gmapping、amcl、迪杰斯特拉、a*算法比较熟悉。但是,对机器人底盘的知识,尤其是Ros和stm32怎么通信的,很多人却是不算太了解的。原创 2023-10-08 22:40:07 · 2628 阅读 · 0 评论 -
slam从入门到精通(稍复杂一点的运动控制)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 ros本身只是提供了一个框架,上面对应客户需求,下面对应各个传感器,中间就是各个算法和决策措施。但是robot本身要真正动起来的话,还是需要底盘开发板来配合实施的。本身ros的底层输出只能到cmd_vel这一个层次。再深入的开发,比如说用pid来实现cmd_vel的效果,这个就需要在底盘开发板上用rtos+pid之类的控制算法来实现了。 所以,在还没有自己的实体ro原创 2023-10-07 11:52:08 · 244 阅读 · 0 评论 -
SLAM从入门到精通(用python实现机器人运动控制)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 在ROS下面,开发的方法很多,可以是c++,可以是python。大部分接口操作类的应用,其实都可以用python来开发。或者如果想对某一类的算法、设备来验证,这个时候用python来开发也是ok的。当然如果是纯算法,或者最终是需要部署在嵌入式系统上面长期运行的,那么这个时候基本上只能选择c++了。下面我们就来谈一谈如何在ros环境下进行ros开发。原创 2023-10-04 16:07:00 · 1805 阅读 · 0 评论 -
SLAM从入门到精通(从amcl到navigation软件栈)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 前面我们学习了amcl,但它只是navigation里面的一个package而已。真正的导航还包含很多的内容。举个例子来讨论下,我们假设需要一个机器人从a点走到b点,应该分成哪几个步骤来完成呢。首先,机器人需要确认下自己的位置吧,是在其他地方,还是已经在a点了?接着,机器人需要规划一条a点到b点的路径吧?规划的路径只是保证了这条道路的可行性,但小车本身的机械属性是不是可以走完这条路、原创 2023-10-02 23:10:20 · 372 阅读 · 0 评论 -
SLAM从入门到精通(tf的使用)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 在ros的机器人学习过程中,有一件事情是肯定少不了的。那就是坐标系的转换。其实这也很容易理解。假设有一个机器人,它有一个3d camera、有一个机械手臂。这个时候有一个需求,需要通过3d camera告知物体的位置,然后通知另外一个机械手臂取走。 看上去这个任务很简单,但是这中间就涉及到了坐标系的转换。比如说,摄像头识别到物体,这个时候物体是摄像头坐标系下的一个p原创 2023-10-01 21:35:23 · 575 阅读 · 0 评论 -
SLAM从入门到精通(gmapping建图)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 前面我们介绍了hector slam建图。相对而言,hector slam建图对数据的要求比较低,只需要lidar数据就可以建图了。但是hector slam也有它自己的问题。那就是如果robot行走在走廊上面,特别是长走廊上面,那么hector slam是很难建图的。这主要的原因就是,hector slam算法会觉得前后两帧lidar frame没有发生改变,小车根本没有移动。基于原创 2023-09-30 21:54:20 · 964 阅读 · 0 评论 -
SLAM从入门到精通(amcl定位使用)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 学习slam,一般就是所谓的边定位、边制图的知识。然而在实际生产过程中,比如扫地机器人、agv、巡检机器人、农业机器人,很多情况下都是先绘制好地图。等地图ok了,再规划机器人特定的路径。路径这些都没问题了之后,机器人就会按照我们的设想,去指定的地方执行指定的任务就可以了。所以,制定完地图之后,后续的任务就不再需要制图了,主要就是定位。也就是机器人在行进的过程当中不要丢位置就可以了。原创 2023-09-29 18:52:37 · 1419 阅读 · 0 评论 -
SLAM从入门到精通(第一次hector slam建图)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 目前建图的方法一般有视觉建图和激光建图两种。其中激光建图,又可以分成hector、gmapping、cartographer这几种。要说最简单的建图方法,那还真是非hector莫属。因为hector建图的话,本身需要的数据类型非常少,只需要lidar的输入数据即可,不再需要其他的数据。当然,hector建图也有自己的缺点,比如说长走廊,就不太合适hector。当然我们这里只是为了演示原创 2023-09-28 16:39:36 · 2394 阅读 · 0 评论 -
SLAM从入门到精通(地图发布)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 slam的最终目的是为了建图和定位。有了地图,我们才知道当前机器人已经走到了哪个位置、哪些位置有障碍物、选择哪个路线比较靠谱。当然很多人会说,slam本身不是边走边定位的意思吗?然后在实际生产中,我们一般都是先制作地图。等把地图上传到机器人上,再让机器人按照预定的路径进行行走的。今天,我们可以学习一下,ros下面的地图是什么样子的。至于,地图应该怎么制作和生成,可以在后面的章节继续进原创 2023-09-27 10:07:52 · 526 阅读 · 0 评论 -
SLAM从入门到精通(IMU数据的读取)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 上一篇文章我们说过,对于差速轮来说,旋转的计算很多程度上依赖于theta=tan(theta)这个公式来进行的。但是,我们也知道,如果机器人转弯很快的话,这个公式其实是不成立的。因为,对于旋转这件事情来说,我们能想到的,就是用IMU来对角速度来进行补偿和计算。原创 2023-09-26 15:56:45 · 803 阅读 · 0 评论 -
SLAM从入门到精通(底盘里程计的计算)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 曾经有一段时间,对里程计没有一点概念。一直以为它是通过某种传感器直接给出来的裸数据。等到后来接触多了,才知道里程计也是算出来的。狭义的里程计一般就是利用底盘上面的编码器直接计算出来的。而广义的里程计则多了,可以是激光里程计,也可以是图像里程计,只要通过传感器的数据差能获得当前机器人的位姿信息,都可以称作里程计。原创 2023-09-25 18:46:19 · 749 阅读 · 0 评论 -
SLAM从入门到精通(lidar数据的采集)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 lidar是机器人用的比较多的一种传感器。从前可能单线lidar用的比较多,现在多线lidar则开始慢慢崛起了。这里面最主要的原因还是价格。之前3d lidar动则十几万、几万的价格,这是大多数厂家都负担不起的。而现在,随着越来越多的国产厂家参与到了3d lidar的研发,这个时候lidar的价格也应声下跌,开始走入大规模商用的时代。 对于不同品牌的厂家来说,它们一原创 2023-09-25 12:01:42 · 422 阅读 · 0 评论 -
SLAM从入门到精通(rviz的使用)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 在ros开发当中,rviz和tf都是用的比较多的一个工具。前者是为了实现传感器数据和计算结果的可视化,后者主要是为了显示各个传感器、传感器和小车之间的旋转变换。今天我们就了解一下rviz。很多同学搞不清楚rviz和gazebo的关系。正好借助这次机会说说清楚。 应该说,在一开始我们没有robot实车的时候,用gazebo搭建一个仿真环境,利用这个仿真的环境和机器人模原创 2023-09-25 10:46:49 · 975 阅读 · 0 评论