双物块弹簧阻尼系统模型,李雅普诺夫稳定性分析,matlab仿真验证

双物块弹簧阻尼系统模型:

在这里插入图片描述

图1. 双物块弹簧阻尼系统模型

首先向 @Spgroc 表示感谢:
-

我害怕你心碎没人帮你擦眼泪,
别离开我身边,
拥有我,
你的世界才完美。

进入正题:

        上面图1:

        U ( t ) U(t) U(t)是扰动输入,可以理解为拽一下小车让它动起来
        x 1 ( t ) x_1(t) x1(t) , x 2 ( t ) x_2(t) x2(t)是小车位移,规定向右为正方向
        k 1 k_1 k1 , k 2 k_2 k2是弹簧弹性系数
        r 1 r_1 r1 , r 2 r_2 r2是阻尼系数。阻尼力=阻尼系数 x 速度。
        m 1 m_1 m1 , m 2 m_2 m2是小车质量

{ m 2 x ¨ 2 = − r 2 x ˙ 2 − k 2 ( x 2 − x 1 ) m 1 x ¨ 1 = k 2 ( x 2 − x 1 ) − r 1 x ˙ 1 − k 1 x 1 (1) \begin{cases} m_2\ddot{x}_2=-r_2\dot{x}_2-k_2(x_2-x_1)\\ m_1\ddot{x}_1=k_2(x_2-x_1)-r_1\dot{x}_1-k_1x_1 \tag{1} \end{cases} {m2x¨2=r2x˙2k2(x2x1)m1x¨1=k2(x2x1)r1x˙1k1x1(1)
       根据实际的物理过程选取状态变量,令:
{ z 1 = x 2 z 2 = x ˙ 2 z 3 = x 1 z 4 = x ˙ 1 (2) \begin{cases} z_1=x_2 \\ z_2=\dot{x}_2\\ z_3=x_1 \\ z_4=\dot{x}_1\\ \tag{2} \end{cases} z1=x2z2=x˙2z3=x1z4=x˙1(2)

把公式(2)带入公式(1),得:
{ z ˙ 1 = x ˙ 2 = z 2 z ˙ 2 = x ¨ 2 = 1 m 2 ( − r 2 z 2 − k 2 ( z 1 − z 3 ) ) z ˙ 3 = x ˙ 1 = z 4 z ˙ 4 = x ¨ 1 = 1 m 1 ( k 2 ( z 1 − z 3 ) − r 1 x 1 − k 1 x 1 ) (3) \begin{cases} \dot {z}_1=\dot{x}_2=z_2 \\ \dot {z}_2=\ddot{x}_2= \frac{1}{m_2}(-r_2z_2-k_2(z_1-z_3))\\ \dot{z}_3=\dot{x}_1=z_4\\ \dot{z}_4=\ddot{x}_1=\frac{1}{m_1}(k_2(z_1-z_3)-r_1x_1-k_1x_1)\\ \tag{3} \end{cases} z˙1=x˙2=z2z˙2=x¨2=m21(r2z2k2(z1z3))z˙3=x˙1=z4z˙4=x¨1=m11(k2(z1z3)r1x1k1x1)(3)
       把公式(3)化成状态空间表达式的形式:

( z ˙ 1 z ˙ 2 z ˙ 3 z ˙ 4 ) = ( 0 1 0 0 − k 2 m 2 − r 2 m 2 k 2 m 2 0 0 0 0 1 − k 2 m 1 0 − ( k 2 + k 2 ) m 2 − r 2 m 1 ) ∗ ( z 1 z 2 z 3 z 4 ) (4) \left( \begin{matrix} \dot {z}_1\\ \dot {z}_2\\ \dot {z}_3\\ \dot {z}_4\\ \end{matrix} \right) =\left( \begin{matrix} 0 & 1 & 0 & 0\\ \frac{-k_2} {m_2}& \frac{-r_2}{m_2}& \frac{k_2}{m_2}& 0\\ 0 & 0& 0 & 1\\ \frac{-k_2} {m_1}& 0 &\frac{-(k_2+k_2)} {m_2} & \frac{-r_2}{m_1}\\ \end{matrix} \right) *\left( \begin{matrix} {z}_1\\ {z}_2\\ {z}_3\\ {z}_4\\ \end{matrix} \right) \tag{4} z˙1z˙2z˙3z˙4 = 0m2k20m1k21m2r2000m2k20m2(k2+k2)001m1r2 z1z2z3z4 (4)
       公式(4)等号右边第一个矩阵称为系统矩阵,对于线性系统而言,可以根据系统矩阵的特征值判断该系统是不是稳定的,当然也可以利用李雅普诺夫函数

       根据能量守恒,构造李雅普诺夫函数V(z)
V ( z ) = 1 2 m 2 z 2 2 + 1 2 m 1 z 4 2 + 1 2 k 2 ( z 1 − z 3 ) 2 + 1 2 k 1 z 3 2 (5) V_{(z)}=\frac1{2}m_2z_2^2+\frac1{2}m_1z_4^2+\frac1{2}k_2(z_1-z_3)^2+\frac1{2}k_1z_3^2 \tag{5} V(z)=21m2z22+21m1z42+21k2(z1z3)2+21k1z32(5)
V ˙ ( z ) = 1 2 m 2 z 2 ∗ z ˙ 2 + 1 2 m 1 z 4 ∗ z ˙ 4 + 1 2 k 2 ( z 1 − z 3 ) ∗ ( z ˙ 1 − z ˙ 3 ) + 1 2 k 1 z 3 ∗ z ˙ 3 (6) \dot V_{(z)}=\frac1{2}m_2z_2*\dot z_2+\frac1{2}m_1z_4*\dot z_4+\frac1{2}k_2(z_1-z_3)*(\dot z_1-\dot z_3)\\ +\frac1{2}k_1z_3*\dot z_3 \tag{6} V˙(z)=21m2z2z˙2+21m1z4z˙4+21k2(z1z3)(z˙1z˙3)+21k1z3z˙3(6)
       把公式(4)中的 z ˙ 1 \dot z_1 z˙1, z ˙ 2 \dot z_2 z˙2, z ˙ 3 \dot z_3 z˙3, z ˙ 4 \dot z_4 z˙4带入到公式(6) V ˙ ( x ) 中,经整理得: \dot V_{(x)}中,经整理得: V˙(x)中,经整理得:
V ˙ ( z ) = − r 2 z 2 2 − r 1 z 4 2 (7) \dot V_{(z)}=-r_2z_2^2-r_1z_4^2 \tag{7} V˙(z)=r2z22r1z42(7)
       从公式(5)和(7)可以很容易看出来 V ( z ) V_{(z)} V(z)是正定的, V ˙ ( z ) \dot V_{(z)} V˙(z)是负定的。
       故,该系统本身就是一个渐近稳定的系统。

对该系统进行matlab仿真验证渐进稳定性:

clear ;clc;
ma=20;mb=20;ra=20;rb=20;ka=3;kb=2;
X(:,1)=[70;0;50;0];
A=[0 1 0 0;-ka/ma -ra/ma ka/ma 0;0 0 0 1;ka/mb 0 -(ka+kb)/mb -rb/mb];
n=2000;
den=1;
for i=1:n
    time(i)=i;
    X(:,i+1)=X(:,i)+0.1*A*X(:,i);
end

figure(1);
plot(time,X(1,1:n),'--',time,X(2,1:n),'m',time,X(3,1:n),'--',time,X(4,1:n),'k');
legend('车2的位置','车2的速度','车1的位置','车1的速度');

仿真结果

仿真结果

学艺不精,敬请批评指正。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值