YOLOv8改进 | 检测头篇 | 重参数化检测头RepHead解决困难样本检测

鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)

YOLOv8改进 | 检测头篇 | 重参数化检测头RepHead解决困难样本检测

介绍

RepHead(Re-parameterized Head)是本文提出的全新检测头,它基于重参数化技术,能够有效提高YOLOv8模型对困难样本的检测精度。RepHead适用于各种目标检测任务。

原理详解

RepHead的核心思想是利用重参数化技术,将检测头的参数转换为更优的分布,从而提高模型对困难样本的学习能力。具体来说,RepHead包含以下步骤:

  1. 特征提取: 首先,从CNN主干网络中提取不同尺度的特征图。
  2. 特征融合: 然后,将不同尺度的特征图进行融合。
  3. 重参数化: 对融合后的特征图进行重参数化,将其转换为更优的分布。
  4. 预测: 最后,利用重参数化后的特征图进行预测。

RepHead采用了自注意力机制,能够增强特征图中不同通道之间的相互依赖关系,从而更好地提取目标特征。此外,RepHead还采用了FPN(Feature Pyramid Network)结构,能够融合不同尺度的特征图,使模型能够更好地感知不同尺度的目标。

应用场景解释

RepHead适用于各种目标检测任务,尤其适用于检测小目标、模糊目标和遮挡目标等困难样本。

算法实现

import torch
import torch.nn as nn
import torch.nn.functional as F

class RepHead(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(RepHead, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, 256, kernel_size=1, padding=0)
        self.conv2 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(256, num_classes, kernel_size=1, padding=0)

        self.attn = nn.Sequential(
            nn.Conv2d(256, 256, kernel_size=1, padding=0),
            nn.Sigmoid()
        )

        self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)

        x = self.attn(x) * x

        x = self.conv2(x)
        x = F.relu(x)

        x = self.up(x)

        x = self.conv3(x)
        return x

class YOLOv8(nn.Module):
    def __init__(self, num_classes):
        super(YOLOv8, self).__init__()
        self.backbone = Backbone()
        self.neck = Neck()
        self.head = RepHead(2048, num_classes)

    def forward(self, x):
        x = self.backbone(x)
        x = self.neck(x[1], x[2], x[3])
        x = self.head(x[0])
        return x

代码完整详细实现

import torch
import torch.nn as nn
import torch.nn.functional as F

class Backbone(nn.Module):
    def __init__(self):
        super(Backbone, self).__init__()
        self.stage1 = C2f_FasterBlock(3, 64)
        self.stage2 = nn.Sequential(*[
            C2f_FasterBlock(64, 128),
            C2f_FasterBlock(128, 256),
            C2f_FasterBlock(256, 512),
        ])
        self.stage3 = nn.Sequential(*[
            C2f_FasterBlock(512, 1024),
            C2f_FasterBlock(1024, 2048),
        ])
        self.stage4 = nn.Sequential(*[
            C2f_FasterBlock(2048, 4096),
            C2f_FasterBlock(4096, 8192),
        ])

    def forward(self, x):
        x1 = self.stage1(x)
        x2 = self.stage2(x1)
        x3 = self.stage3(x2)
        x4 = self.stage4(x3)
        return [x1, x2, x3, x4]

class Neck(nn.Module):
    def __init__(self):
        super(Neck, self).__init__()
        self.path1 = nn.Sequential(*[
            C2f_FasterBlock(64, 128),
            C2f_FasterBlock(128, 256),
            C2f_FasterBlock(256, 512),
        ])
        self.path2 = nn.Sequential(*[
            C2f_FasterBlock(256, 512),
            C2f_FasterBlock(512, 1024),
            C2f_FasterBlock(1024, 2048),
        ])
        self.path3 = nn.Sequential(*[
            C2f_FasterBlock(1024, 2048),
            C2f_FasterBlock(2048, 4096),
            C2f_FasterBlock(4096, 8192),
        ])

    def forward(self, x1, x2, x3):
        p1 = self.path1(x1)
        p2 = self.path2(x2)
        p3 = self.path3(x3)
        return [p1, p2, p3]

class RepHead(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(RepHead, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, 256, kernel_size=1, padding=0)
        self.conv2 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(256, num_classes, kernel_size=1, padding=0)

        self.attn = nn.Sequential(
            nn.Conv2d(256, 256, kernel_size=1, padding=0),
            nn.Sigmoid()
        )

        self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)

        x = self.attn(x) * x

        x = self.conv2(x)
        x = F.relu(x)

        x = self.up(x)

        x = self.conv3(x)
        return x

class YOLOv8(nn.Module):
    def __init__(self, num_classes):
        super(YOLOv8, self).__init__()
        self.backbone = Backbone()
        self.neck = Neck()
        self.head = RepHead(2048, num_classes)

    def forward(self, x):
        x = self.backbone(x)
        x = self.neck(x[1], x[2], x[3])
        x = self.head(x[0])
        return x

部署测试搭建实现

YOLOv8模型可以部署到CPU、GPU或移动设备上。具体部署步骤如下:

1. 模型转换

首先,需要将YOLOv8模型转换为目标硬件平台的格式。例如,如果要部署到CPU上,需要使用ONNX Runtime将模型转换为ONNX格式;如果要部署到GPU上,需要使用CUDA Toolkit将模型转换为PT格式;如果要部署到移动设备上,需要使用OpenCV或TensorFlow Lite将模型转换为CoreML或TFLite格式。

2. 模型推理

将转换后的模型加载到推理引擎中,然后使用推理引擎对输入数据进行推理。例如,可以使用ONNX Runtime、CUDA Toolkit、CoreML或TensorFlow Lite进行推理。

3. 性能测试

使用测试数据集对模型的性能进行测试,包括精度、速度等指标。

总结

RepHead是一种新颖的检测头,它能够有效提高YOLOv8模型对困难样本的检测精度。RepHead适用于各种目标检测任务,具有广阔的应用前景

  • 6
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼弦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值