pyecharts第八节、雷达图

需要更新【pyecharts】

pip install pyecharts_snapshot
 
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts==0.5.11

创建【demo8.py】作为测试类

输入以下编码:

#导入模块
from pyecharts import Radar

#2个系列的5个维度的数据
value = [[5,5,5,5,5,5]]

#用于调整雷达各维度的范围大小
c_schema= [{"name": "力量", "max": 5, "min": -1},
           {"name": "速度", "max": 5, "min": -1},
           {"name": "技术", "max": 5, "min": -1},
           {"name": "发球", "max": 5, "min": -1},
           {"name": "防守", "max": 5, "min": -1},
           {"name": "经验", "max": 5, "min": -1}
]

#画图
radar = Radar()
radar.config(c_schema=c_schema)
radar.add("马龙——六边形战士", value, area_opacity=0.3,legend_top='bottom')
radar.render("Hero.html")

如果想加样式也有的

  • title_pos ='left'/center'/'right'标题位置,默认left
  • radar_text_size,雷达图标签文本字体大小
  • item_color,该系列的颜色(此处体现为线条颜色)
  • symbol =None,线条上的圆圈
  • area_color,填充区域颜色
  • area_opacity,填充区域透明度
  • lengend_top='top'/'bottom',图例位置,默认top
  • lengend_text_size,图例字体大小
  • line_width,线条宽度

执行编译

打开生成的【Hero.html】

双击打开

效果

 希望能给大家带来一定帮助。

<think>好的,用户想用Python绘制雷达,使用Matplotlib和Seaborn。我需要先回顾一下相关知识,确保步骤正确。 首先,记得Matplotlib是基础库,而Seaborn基于它,提供了更美观的样式。但雷达在Matplotlib中需要一些手动设置,比如极坐标轴。Seaborn可能没有直接支持,但可以利用样式美化。 用户提供的引用中,引用[2]和[4]提到了使用这两个库绘制雷达,特别是引用[4]指出了雷达的缺点,比如数据规范化和视觉误导的问题,需要提醒用户注意。 接下来,步骤应该是:导入库、准备数据、创建极坐标、绘制连线并填充、设置标签和标题。对于Seaborn,可能需要先设置样式,再使用Matplotlib的绘功能。 还要注意数据需要规范化,每个维度的数据范围应该一致,否则形会变形。例如,在示例中将数据归一化到0-1之间。 另外,用户可能需要知道如何添加标签,调整坐标轴的标签位置,以及如何美化表。比如使用Seaborn的set_style来改变外观,然后继续用Matplotlib绘。 最后,要提醒用户雷达的适用场景和注意事项,比如数据量不宜过多,需要规范数据等,参考引用[4]的内容。 现在需要组织步骤,确保代码正确,语法无误。同时要检查是否需要导入numpy,因为数据处理可能会用到。示例代码中的类别和分数可能需要调整,让用户明白如何替换成自己的数据。 可能的问题点:极坐标的参数设置,标签的角度是否正确,填充颜色的透明度设置是否合适。需要测试代码是否有误,比如theta的计算是否正确,是否闭合形(最后一个点连接回第一个点)。 生成相关问题的时候,要考虑用户可能遇到的后续问题,比如如何美化、处理多组数据、常见问题解决,以及替代方案如pyecharts。</think>### 使用Matplotlib和Seaborn绘制雷达的步骤 #### 1. **基础方法(Matplotlib)** ```python import matplotlib.pyplot as plt import numpy as np # 数据准备(假设有5个维度) labels = ['速度', '精度', '复杂度', '可读性', '扩展性'] values = [0.8, 0.7, 0.6, 0.9, 0.5] # 需归一化到同一量纲[^4] num_vars = len(labels) # 计算角度(闭合形需重复第一个值) angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist() values += values[:1] angles += angles[:1] # 创建极坐标 fig = plt.figure(figsize=(6, 6)) ax = fig.add_subplot(111, polar=True) # 绘制雷达 ax.plot(angles, values, linewidth=2, linestyle='solid', label='Python') ax.fill(angles, values, alpha=0.25) # 设置标签和标题 ax.set_theta_offset(np.pi / 2) # 初始角度调整 ax.set_theta_direction(-1) # 顺时针方向 ax.set_thetagrids(np.degrees(angles[:-1]), labels) ax.set_title('编程语言特性雷达', pad=20) ax.legend(loc='upper right') plt.show() ``` **关键点解读**: - **极坐标转换**:通过`polar=True`将坐标系转换为极坐标[^2]。 - **角度计算**:使用`np.linspace`均匀分配维度角度,闭合需重复首项。 - **数据规范化**:所有维度值需缩放到相同范围(如0-1)避免误导。 --- #### 2. **结合Seaborn美化样式** ```python import seaborn as sns # 设置Seaborn风格 sns.set_style("whitegrid") # 重复上述Matplotlib代码(略) # 在plt.show()前添加以下调整: ax.set_rlabel_position(30) # 半径标签位置 plt.ylim(0, 1) # 统一刻度范围 sns.despine(left=True, bottom=True) # 隐藏边框 ``` **效果优化**: - `sns.set_style`可更换为`darkgrid`/`ticks`等风格[^1]。 - 通过`despine`移除多余边界线,提升简洁性[^3]。 --- #### 3. **多组数据对比** ```python # 添加对比数据(例如C++) values2 = [0.7, 0.6, 0.8, 0.7, 0.6] values2 += values2[:1] ax.plot(angles, values2, linewidth=2, linestyle='dashed', label='C++') ax.fill(angles, values2, alpha=0.15) ax.legend() ``` **注意**: - 多组数据需统一量纲和标签数量。 - 使用不同线型和透明度增强可读性。 --- ### 雷达适用场景与注意事项 1. **适用场景**: - 多维度属性对比(如技能评估、产品评测)。 - 少量数据集(通常不超过8个维度)[^4]。 2. **避坑指南**: - **避免过多维度**:超过8个维度会导致形拥挤。 - **强制数据规范化**:未规范化的数据会扭曲比例。 - **替代方案**:对非正交数据可改用平行坐标[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红目香薰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值