C++符号解析

在代码进行连接的时候,经常找不到某个函数,不过由于c++做了一些修饰,所以很多时候不大清楚这个字符串到底代表什么,下面是一位大神给的解释:地址

GCC的基本C++名称修饰方法如下:所有的符号都以"_Z"开头,对于嵌套的名字(在名称空间或在类里面的),后面紧跟"N",然后是各个名称空间和类的名字,每个名字前是名字字符串长度,再以"E"结尾。比如N::C::func经过名称修饰以后就是_ZN1N1C4funcE。对于一个函数来说,它的参数列表紧跟在"E"后面,对于int类型来说,就是字母"i"。所以整个N::C::func(int)函数签名经过修饰为_ZN1N1C4funcEi。更为具体的修饰方法我们在这里不详细介绍,有兴趣的读者可以参考GCC的名称修饰标准。

不过考虑到自己解析麻烦,C++也提供了相应的工具 c++filt :

 c++filt _ZN5trans3std4funcEi
 //result
 trans::std::func(int)
### R语言中的GO和KEGG富集分析 #### 数据准备 为了在R中执行GO和KEGG富集分析,数据通常需要经过预处理阶段。这涉及收集基因列表并将其转换成适合用于富集分析的形式。可以利用Excel来整理这些初步的数据文件[^1]。 #### 安装必要的包 要开始GO和KEGG富集分析,在R环境中安装几个重要的库是必不可少的: ```r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install(c("clusterProfiler", "org.Hs.eg.db")) ``` #### 加载所需的库 一旦上述包被成功安装,下一步就是加载它们以便后续操作能够顺利进行: ```r library(clusterProfiler) library(org.Hs.eg.db) ``` #### 执行富集分析 下面是一个简单的例子展示如何使用`enrichGO()`函数来进行GO术语上的富集测试;对于KEGG路径,则可采用类似的逻辑调用相应的API接口如`enrichKEGG()`: ```r # 假设我们有一个差异表达基因(DEGs) ID 列表 deg_ids <- c("7089", "5643", ...) ego <- enrichGO(gene = deg_ids, universe = keys(org.Hs.eg.db, keytype="ENTREZID"), OrgDb = org.Hs.eg.db, ont = "BP", pAdjustMethod= "BH", qvalueCutoff = 0.05) ekg <- enrichKEGG(gene = deg_ids, organism = 'hsa', pAdjustMethod= "BH", qvalueCutoff = 0.05) ``` 以上代码片段展示了基本的工作流程,其中包含了设置参数以调整p值的方法(这里选择了Benjamini-Hochberg校正),以及指定显著性的阈值(q-value cutoff)。 #### 结果可视化 最后一步是对获得的结果进行解释和呈现。ClusterProfiler提供了多种绘图选项帮助理解所得结论: ```r dotplot(ego, showCategory=20) barplot(ego, showCategory=20) cnetplot(ego, categorySize='medium') ``` 通过这种方式,不仅可以直观地看到哪些生物过程受到了影响,还可以进一步探索不同类别之间的关系网络结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值