PyTorch, TensorFlow 和 JAX 功能对比简介
PyTorch、TensorFlow 和 JAX 是当前最流行的深度学习框架。它们各自具有独特的特性和优势,适合不同的应用场景和开发者需求。下面是对这三个框架的功能对比。
1. 基本概念和特性
-
PyTorch:
- 动态计算图(Dynamic Computation Graph):PyTorch 采用动态计算图,提供了更直观和灵活的调试体验。
- 自动微分(Autograd):内置自动微分功能,方便进行反向传播和梯度计算。
- 广泛的社区支持:拥有活跃的社区和丰富的第三方库,如 torchvision(计算机视觉)、torchaudio(音频处理)等。
- 易于使用:API 设计直观,类似于 Python 的 NumPy,易于上手。
-
TensorFlow:
- 静态计算图(Static Computation Graph):最初采用静态计算图(Define-an