向量积

矩阵形式[编辑]

给定直角坐标系的单位向量ijk满足下列等式:

i ×  j =  k           j ×  k =  i           k ×  i =  j

通过这些规则,两个向量的叉积的坐标可以方便地计算出来,不需要考虑任何角度:设

a =  a 1 i +  a 2 j +  a 3 k = [ a 1a 2a 3]
b =  b 1 i +  b 2 j +  b 3 k = [ b 1b 2b 3]

a ×  b = [a 2b 3 − a 3b 2, a 3b 1 − a 1b 3, a 1b 2 − a 2b 1]

上述等式可以写成矩阵行列式的形式:

\mathbf{a}\times\mathbf{b}=\det \begin{vmatrix}\mathbf{i} & \mathbf{j} & \mathbf{k} \\a_1 & a_2 & a_3 \\b_1 & b_2 & b_3 \\\end{vmatrix}

叉积也可以用四元数来表示。注意到上述ijk之间的叉积满足四元数的乘法。一般而言,若将向量[a1a2a3]表示成四元数a1i + a2j + a3k,两个向量的叉积可以这样计算:计算两个四元数的乘积得到一个四元数,并将这个四元数的实部去掉,即为结果。更多关于四元数乘法,向量运算及其几何意义请参见四元数与空间旋转

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值