由于近些年深度学习技术的飞速发展,大力加速推动了AI在互联网以及传统各个行业的商业化落地,其中,推荐系统、计算广告等领域彰显的尤为明显。由于推荐系统与提升用户量以及商业化变现有着密不可分的联系,各大公司都放出了众多推荐系统相关职位,且薪水不菲,目前发展势头很猛。
但是,这里存在几个问题,很多欲从事推荐系统的同学大多数学习的方式是自学,1、往往是学了很多的推荐算法模型,了解些推荐里常用的算法,如:协同过滤、FM、deepFM等,但是却不清楚这些模型在工业界推荐系统中是如何串联、如何配合、有哪些坑,哪些trick的,导致无论面试还是真正去业界做推荐系统,都会被推荐领域的”老枪老炮“们一眼识别出小白属性。2、对于算法原理理解不深刻,这就会导致实际应用时不能很好地将模型的性能发挥出来,另外面试时对于大厂面试官的刨根问底,只能是眼睁睁的丢掉offer。
CF、FM、DSSM、DeepFM等这些推荐业界明星模型,你真的清楚他们的内部运行原理以及使用场景吗?真的了解FM模型与SVM有什么相似之处吗?FM固然可以用作为打分模型,但它可以用来做matching吗,如果可以,如何做?item2Vec模型在业界是如何缓解冷启动的问题的?双塔模型优势在哪?深度模型到底是如何做matching的,是离线计算好结果还是实时的对网络进行前向计算?DeepFM具体实现时,wide端和deep端的优化方式是一样的吗?基于Graph的推荐方法在业界的应用目前是怎样的?基于上述的目的,贪心学院推出了《推荐系统工程师培养计划2期》,由一线的推荐系统负责人亲自全程直播讲解。
《推荐算法工程师培养计划》
专注于培养行业TOP10%的推荐算法工程师
对课程有意向的同学
添加课程顾问小姐姐微信
报名、课程咨询
????????????
02 课程大纲
第一部分:推荐系统之内容理解与画像构建
Week1:机器学习基础
逻辑回归模型
梯度下降法
神经网络模型
过拟合与正则
常用的评价指标
常用的优化算法
向量、矩阵基础
Week2:推荐系统基础
推荐系统概述、架构设计
推荐系统后台数据流设计
常用的技术栈
推荐系统中的评价指标
简单的用户协同
环境搭建
Week3:内容画像的构建以及NLP技术
内容画像的搭建基础
关键词提取技术tf-idf, textRank
LSTM与注意力机制
Attention的几种常用方式
Self-Attention
Multi-head Attention
双线性Attention
NLP工具的使用
MySQL数据库的搭建与内容画像存储
Week4:用户画像的构建
用户画像与内容画像的关系
用户画像的架构
用户画像的扩展
用户画像与排序特征
用途:基于标签的用户画像
标签权重的计算方法(贝叶斯平滑、时间衰减)
基于用户画像的召回方法
Redis的搭建与使用
基于Redis的用户画像存储
Hadoop, Hive, Spark等工具使用
第二部分:召回模型与策略、数据与采样的学问
Week5:传统Matching方法
MF召回法以及求解
特征值分解
传统奇异值分解之SVM
FunkSVD
ALS方法
SVD++
基于物品的协同Item-CF
Week6:深度 Matching方法
MF召回法以及求解
理解Embedding技术
Embedding为什么有效
Embedding与稀疏ID类特征的关系
Item-CF召回与Item2Vec
Airbnb序列召回与冷启动缓解思路
NCF召回以及变种
YouTube召回方法
从DSSM到双塔模型
双塔模型工业界的部署方法
多兴趣召回
MIND召回
Faiss工具介绍
KD树,LSH,Simhash
Week7: Graph Embedding与用户行为构建图
MIND召回
随机游走于传统协同方法
Deepwalk
Node2Vec及其同质性与结构性
LINE
随机游走的实现
Alias采样方法
Neo4j讲解
Graph Embedding的实现
Node2Vec的实现
Week8: 图推荐、图神经网络、采样与热度打压
MIND召回
Graph Embedding优化
EGS,注意力机制及其变种
Ripple网络方法
召回层采样的坑与技巧
热度抑制
EGES的实现
GCN和GAT
GraphSage
第三部分:排序模型、重排序与多目标
Week9: 经典Ranking模型方法
MIND召回
Ranking与用户画像
物品画像
LR模型
GBDT+ LR
FM模型详解、业界使用方法与坑
FFM模型
AUC与GAUC
增量学习与Online Learning
从L1稀疏化、FOBOS到FTRL算法
基于FM实现Ranking精排序
Week10: 深度Ranking模型与工业采样技巧
粗排与精排及其意义
主流深度推荐模型的集中范式
特征自动组合:Deep&Cross, XDeepFM, PNN
特征重要度提取以及无用特征去噪:AFM, DeepFFM
序列推荐模型:DIN,DIEN, AttRes,Stamp
独辟蹊径之序列推荐的优化思路
深度模型工具的介绍与使用
MLSQL
DeepCTR等与工业界采样方法
Week11: 重排序与多目标学习
多目标学习的几种范式
范式一:样本加权
范式二:多模型融合
范式三:联合训练、ESMM,MMOE框架,ESM2等
ESMM的实现
第四部分:实时召回策略与前沿推荐技术
Week12-13: 工业界新闻推荐系统中冷启动与热点文章实时召回
人群分桶
实时交互正反馈
实时召回与实时画像技术
人群投票
人群等级投票
降维分发
后验与先验的结合
引入注意力机制的优化兴趣增加和衰减
热点文章召回策略
本地文章召回策略
算法策略与运营配合协作
Week14: 强化学习与推荐系统、AutoML与推荐系统
强化学习概念、以及在推荐系统中的对应
DP算法本质思想
马尔科夫决策
蒙特卡洛搜索所树(MCTS)
UCB及其在推荐系统中的应用
汤普森采样法
Q-Learning、DRN、策略梯度
强化学习在推荐场景中的应用
Week15: 项目总结,部署以职业规划
工业界项目的部署
推荐系统岗位的面试要点
大厂的面试攻略
如何准备简历、包装自己
职业规划
03 课程适合谁?
大学生
理工科相关专业的本科/硕士/博士生,毕业后想从事AI工作的人
今后想从事推荐系统相关工作的人
希望能够深入AI领域,为科研或者出国做准备
希望系统性学习推荐相关的技术
在职人士
目前从事IT相关的工作,今后想做跟推荐相关的项目
目前从事AI相关的工作,希望与时俱进,加深对技术的理解
希望能够及时掌握前沿技术
04 报名须知
1、本课程为收费教学。
2、本期仅招收剩余名额有限。
3、品质保障!正式开课后7天内,无条件全额退款。
4、学习本课程需要具备一定的机器学习基础。
●●●
课程其他的细节可以联系课程顾问来获取
添加课程顾问微信
报名、课程咨询
????????????