推荐十本值得一读的AI书籍(留言送书)

下一次技术革命会是什么?

刘润在2022年《进化的力量》演讲中的回答是:

“很可能是第五要素,人工智能驾驭的数据。”

毫无疑问,人工智能技术的应用与落地已经是未来发展的大趋势,我们很多人都期盼着万物互联、万物交互的未来世界

走进人工智能的神奇世界,学习和了解AI技术,以下好书值得一读!

深度学习入门:基于Python的理论与实现

译者:陆宇杰

深度学习真正意义上的入门书

  • 日本深度学习入门经典畅销书,热销10万+

  • 长期位列日亚“人工智能”类图书榜首

  • 简明易懂,相比AI圣经“花书”,更合适入门

简介:本书深入浅出地剖析了深度学习的原理和相关技术。书中使用Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。书中不仅介绍了深度学习和神经网络的概念、特征等基础知识,对误差反向传播法、卷积神经网络等也有深入讲解,此外还介绍了深度学习相关的实用技巧,自动驾驶、图像生成、强化学习等方面的应用,以及为什么加深层可以提高识别精度等“为什么”的问题。

机器学习实战

译者:李锐、李鹏、曲亚东、王斌

精心编排的实例,学会机器学习核心算法

  • 使用Python阐述机器学习概念

  • 介绍并实现机器学习的主流算法

  • 面向日常任务的高效实战内容

简介:本书第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具。

Python深度学习(第2版)

作者:[美] 弗朗索瓦·肖莱;译者:张亮

谷歌公司深度学习科学家帮你构建深度学习知识体系!

  • 深度学习名著重磅升级,涵盖Transformer架构等开创性进展

  • 百万用户级深度学习框架Keras之父执笔,文字生动、见解深刻

  • 不用一个数学公式,利用直觉自然入门深度学习

简介:本书由流行深度学习框架Keras之父弗朗索瓦·肖莱执笔,通过直观的解释和丰富的示例帮助你构建深度学习知识体系。作者避免使用数学符号,转而采用Python代码来解释深度学习的核心思想。
读完本书后,你将能够使用Keras解决从计算机视觉到自然语言处理等现实世界的诸多问题,包括图像分类、图像分割、时间序列预测、文本分类、机器翻译、文本生成等。

Python机器学习基础教程

译者:张亮(hysic)

以机器学习算法实践为重点,使用scikit-learn库从头构建机器学习应用

  • 机器学习入门书,以Python语言介绍

  • 带你一步步构建机器学习应用

  • scikit-learn库维护者和核心贡献者著作

简介:本书将向所有对机器学习技术感兴趣的初学者展示,自己动手构建机器学习解决方案并非难事!书中重点讨论机器学习算法的实践而不是背后的数学,全面涵盖在实践中实现机器学习算法的所有重要内容,帮助读者使用Python和scikit-learn库一步一步构建一个有效的机器学习应用。

一本务实的入门书,零起点上手自然语言处理

  • 多个大厂及北大等30多所大学教学用书

  • 图文并茂,算法、公式、代码相互印证,Java 与 Python 双实现

  • 作者兼具一线实战经验与硬核学术背景,业内超多大牛推荐

  • 学习路径清晰,简单易懂好上手,提供GitHub答疑

简介:HanLP作者何晗汇集多年经验,从基本概念出发,逐步介绍中文分词、词性标注、命名实体识别、信息抽取、文本聚类、文本分类、句法分析这几个热门问题的算法原理与工程实现。书中通过对多种算法的讲解,比较了它们的优缺点和适用场景,同时详细演示生产级成熟代码,助你真正将自然语言处理应用在生产环境中。随着本书的学习,你将从普通程序员晋级为机器学习工程师,最后进化到自然语言处理工程师。

数据挖掘导论(完整版)

数据挖掘入门读物,初学者能在最短时间内总览全局

  • 利用数据挖掘知识解决实际问题

  • 不需要数据库背景,只需要很少的统计学或数学背景知识即可学习

  • 大量的图表、综合示例和丰富的习题,聚焦数据挖掘的主要概念

简介:本书全面介绍了数据挖掘的理论和方法,旨在为读者提供将数据挖掘应用于实际问题所必需的知识。本书涵盖五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都包含两章:前面一章讲述基本概念、代表性算法和评估技术,后面一章较深入地讨论高级概念和算法。
本书适合作为相关专业高年级本科生和研究生数据挖掘课程的教材,同时也可作为数据挖掘研究和应用开发人员的参考书。

图神经网络导论

译者:李泺秋

用这本小而美的书,轻松构建GNN知识体系

  • 综述流行的GNN框架以及应用场景

  • 简明扼要、系统完整,清华大学刘知远力作

  • 多位AI先锋学者联袂推荐

简介:图神经网络(GNN)是基于深度学习的图数据处理方法,因其卓越的性能而受到广泛关注。本书首先概述数学基础和神经网络以及图神经网络的基本概念,接着介绍不同种类的GNN,包括卷积图神经网络、循环图神经网络、图注意力网络、图残差网络,以及几个通用框架。此外,本书还介绍了GNN在结构化场景、非结构化场景和其他场景中的应用。读完本书,你将对GNN的最新成果和发展方向有较为透彻的认识。

深度学习进阶:自然语言处理

译者:陆宇杰

豆瓣评分9.4畅销书《深度学习入门》续作,带你快速直达自然语言处理领域!

  • 内容精炼、简明易懂,轻松入门

  • 不依赖外部库,使用Python 3从零开始创建深度学习程序,侧重原理掌握

  • 文字介绍→代码实现→分析结果→发现问题→进行改善,学习曲线平缓

简介:本书是《深度学习入门:基于Python  的理论与实现》的续作,围绕自然语言处理和时序数据处理,介绍深度学习中的重要技术。本书语言平实,结合大量示意图和Python代码,按照“提出问题”“思考解决问题的新方法”“加以改善”的流程,基于深度学习解决自然语言处理相关的各种问题,使读者在此过程中更深入地理解深度学习中的重要技术。

机器学习:公式推导与代码实现

本书由浅入深,既适合新手快速入门,也适合老手夯实基础

  • 完备的公式推导,解决机器学习的数学难题

  • 基于NumPy与sklearn,介绍26个主流机器学习算法的实现

  • 机器学习实验室”公众号主理人倾力打造,4万读者好评

简介:作为一门应用型学科,机器学习植根于数学理论,落地于代码实现。这就意味着,掌握公式推导和代码编写,方能更加深入地理解机器学习算法的内在逻辑和运行机制。
本书在对全部机器学习算法进行分类梳理的基础之上,分别对监督学习单模型、监督学习集成模型、无监督学习模型、概率模型四个大类共26个经典算法进行了细致的公式推导和代码实现,旨在帮助机器学习学习者和研究者完整地掌握算法细节、实现方法以及内在逻辑。

机器学习算法竞赛实战

新手入门好书,内容实在详尽,实战仔细!

  • 腾讯广告算法大赛两届冠军、Kaggle Grandmaster倾力打造

  • 赛题案例来自Kaggle、阿里天池、腾讯广告算法大赛

  • 按照问题建模、数据探索、特征工程、模型训练、模型融合的步骤讲解竞赛流程

简介:本书是算法竞赛领域一本系统介绍竞赛的图书,书中不仅包含竞赛的基本理论知识,还结合多个方向和案例详细阐述了竞赛中的上分思路和技巧。本书适合从事机器学习、数据挖掘和人工智能相关算法岗位的人阅读。

- END -

最后,为了感谢各位读者的一直以来的支持,在我们送出总共9本上面介绍的图书,依然是老规矩:评论区留言并点赞数前9的读者将直接送书(可以选择上面介绍的一本书)。

到11月2日22:00截止。

(为防止刷量,11月2日18时对留言前20名做个截图作为证据,与最终点赞数量作对比。)


### 推荐适合初学者的人工智能书籍 对于希望从零开始学习人工智能的新手来说,选择合适的入门书籍至关重要。以下是几本广受好评并适合初学者的书籍: #### 1. **《Artificial Intelligence: A Modern Approach》** 这本书由 Stuart Russell Peter Norvig 合著,被认为是 AI 领域的经典教材之[^1]。中不仅涵盖了广泛的主题,还提供了清晰易懂的概念解释技术细节。 #### 2. **《Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow》** 作者 Aurélien Géron 的这本著作非常适合编程背景的学习者。通过实际案例项目驱动的方式介绍机器学习的基础知识以及如何应用这些技术解决现实世界的问题。 #### 3. **《Grokking Deep Learning》** 该由 Andrew W. Trask 编写,采用直观的方法讲解深度神经网络的工作原理及其背后的数学概念。它特别强调理解而非仅仅记忆公式,使得者能够真正掌握核心理念。 #### 4. **《Python Crash Course》** 虽然这不是本专门关于 AI,但对于想要进入这个领域的程序员而言,《Python Crash Course》是本非常实用的语言指南。由于 Python 是目前最流行的数据科学工具包所使用的语言之,在掌握了基本语法之后再去探索更深入的内容会更加容易。 ```python # 示例代码展示如何安装常用的AI库 !pip install numpy pandas scikit-learn tensorflow keras matplotlib seaborn jupyterlab ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值