清华计算几何大作业思路分析和代码实现

本文详细介绍了清华计算几何课程的十个大作业,从入门的凸包问题到高阶的Delaunay三角剖分和动态凸包,提供解题思路、代码实现和难度分析。推荐的学习顺序为:初阶的凸包、动态凸包和十字路口,再到高阶的Delaunay三角剖分和点定位算法。文章强调计算几何的挑战性,并提供了参考资料和免责声明。


招募告示:想做一个苏菲2炼金的网站,用于计算最优/次优合成图,涉及算法、Web开发、UI/UX等等,有兴趣请私我哒~

1. 计算几何之缘

距离第一次接触计算几何到现在,不知不觉已经过去了一整年的时间,从一开始什么都不会,被DCEL折磨的死去活来,到现在基本还能玩转DCEL,这个过程真是既折磨又快乐,计算几何确实比较难,但是也是充满快乐的,借用邓俊辉老师在edX计算几何课程主页上面的一句话——体味几何之趣,领悟算法之美,可以完美诠释了笔者学习计算几何的感受,所以这里我给大家分享并整理一下清华x计算几何课程所涉及的10个大作业,以及它们的解题思路,可视化结果,以及我自己实现的代码,希望这些能让对计算几何有兴趣的童鞋根据自己的兴趣和学习进度,来选择合适的大作业。

所以整个系列的文章规划为如下章节:

  1. 前置知识;
  2. 作业列表;
  3. 作业难度分析和食用建议;
  4. 每个作业的具体分析(包括思路分析,可视化结果,代码和拓展等等);

2. 前置知识

  1. 编程:任意一种编程语言,但推荐强类型语言(如C++,Java),更加严谨;
  2. 数据结构及算法:基础数据结构和算法即可(如链表,栈堆,图论等等,KMP,Internet Flow等非必须),但推荐掌握红黑树;
  3. 数学:高中数学即可,只要不去证明算法的正确性和复杂度,高数线代非必须,但会者更佳;

3. 作业列表

作业配套视频课程:计算几何 | Computational Geometry

个人作业项目代码:Algorithm

题目 涉及的计算几何算法 难度系数
CG2017 PA1-1 Convex Hull (凸包) Graham Scan
CG2017 PA1-2 Crossroad (十字路口) 线段求交, Bentley Ottmann ★★★
CG2017 PA2-1 Shortest Path in The Room (房间中的最短路径)<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值