Tesla P4测试

Tesla P4测试

显卡介绍

Tesla P4是NVIDIA在2016年推出的一款计算卡,相关介绍很少。
在这里插入图片描述

官方(需要科学上网)数据如下:
在这里插入图片描述
Tesla P4的体积很小,长宽厚度都只有一般显卡的一半多左右,重量很轻。
Tesla P4功耗在50~75W,PCIe直接供电。
Tesla P4不带显示功能。
价格在1w+。
(2018又推出Tesla T4,相比于P4的Pascal架构,Turing架构更新。)

性能对比

未完待续。

### 如何在 Windows 上设置或使用 Tesla P4 对于希望在 Windows 操作系统上利用 NVIDIA Tesla P4 进行计算任务的用户来说,正确安装和配置 GPU 驱动程序以及必要的软件栈至关重要。 #### 安装 NVIDIA 显卡驱动程序 为了使 Tesla P4 能够正常工作于 Windows 平台上,首要步骤是下载并安装适用于该硬件版本最新的官方 NVIDIA 数据中心 GPU 驱动程序。可以从 NVIDIA 的官方网站获取这些资源[^1]。确保选择了与操作系统匹配且针对数据中心应用优化过的特定版本。 #### 设置 vGPU 功能 如果计划部署虚拟化环境下的图形处理单元,则需激活 Tesla P4 支持的 vGPU 技术。这通常涉及到通过命令行工具 `mdevctl` 来管理和分配物理 GPU 到不同虚拟机实例中的逻辑切片,在 Linux 下操作较为常见;而在 Windows Server 中实现类似功能则依赖于 Hyper-V 或 VMware ESXi 等平台的支持特性来完成相应的配置过程[^2]。 #### 安装 CUDA Toolkit 和 cuDNN 库 为了让应用程序能够充分利用 Tesla P4 提供的强大算力,还需要额外安装 CUDA 工具包 (Compute Unified Device Architecture),它允许开发者编写高效运行于 NVIDIA GPU 上的应用程序代码。与此同时,cuDNN 是一组专门设计用于加速深度神经网络训练过程的库文件,两者均能显著提升基于 TensorFlow、PyTorch 等框架构建模型时的表现效果[^3]。 ```powershell # PowerShell脚本示例:自动检测并安装最新版CUDA Toolkit $cudaUrl = "https://developer.nvidia.com/cuda-downloads" Invoke-WebRequest $cudaUrl -OutFile cuda_installer.exe Start-Process .\cuda_installer.exe -ArgumentList "/silent" -Wait Remove-Item .\cuda_installer.exe ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值