在上一篇文章中,我讲到了尝试开展量化交易的一些初步的想法:Mr.看海:【深度学习量化交易1】一个金融小白尝试量化交易的设想、畅享和遐想
一晃三个多月时间过去了,十一前后股市突然爆火,行情也像过山车一样,笔者在其中靠直觉辗转腾挪,勉强落得个不赔不赚。此事也给我打了一针鸡血,加快了量化交易研究和系统开发进度。
今天聊一聊我所选择的量化交易实现路径。
一、个人做量化交易的几种方式
交易框架的选择是由需求方案决定的,我后续准备结合人工智能相关算法,试验回归预测、时间序列预测、事件驱动等等多种算法策略,对框架的开放性要求较高(可以自由定制开发),需要能够比较便捷地获取历史数据(最好免费),需要有实盘接口(最好免费),最好本地运行(安全)。对此我对比了目前常见的几种实现方式:
1.掘金量化
提供基础投研数据,5日以上tick数据以及6月以上的分钟数据需要付费获取,实盘接口需要申请。
2.同花顺superm