我是Mr.看海,我在尝试用信号处理的知识积累和思考方式做量化交易,应用深度学习和AI实现股票自动交易,目的是实现财务自由~目前我正在开发基于miniQMT的量化交易系统。
在前几篇的文章中讲到,我正在开发的看海量化交易系统,底层是使用miniQMT的Python接口实现的数据获取和交易执行。作为系统开发的基础,在此我将系统梳理一下miniQMT的Python接口库XtQuant,并以案例集的形式对常用功能进行演示和讲解。当然最权威的教程还是XtQuant的官方文档,本文是作为一个易用快查手册,方便我自己查阅,同时也为做相关研究的朋友提供一个参考。
我会将系统的教程案例集做成一个系列并集结成册,需要查看完整教程的朋友可以关注我的公众号:看海的城堡。我正在开发的基于miniQMT的量化交易系统,也欢迎大家关注和使用。
一、基本概念介绍
1.miniQMT、XtQuant和xtdata的关系
miniQMT是一个量化交易终端软件。它作为本地服务器运行,负责与交易所建立连接,接收和存储行情数据,并提供数据下载和交易接口。
XtQuant是miniQMT的Python接口库,作为Python程序与miniQMT之间的桥梁。它通过TCP连接与本地miniQMT服务通信,包含行情(xtdata)和交易(xttrader)两个主要模块。
xtdata是XtQuant中专门用于获取行情数据的模块。它提供了获取各类行情数据的API接口,本质是向miniQMT发送数据请求并处理返回结果。它既支持查询历史数据,也支持订阅实时行情。
2.xtdata模块能实现的主要功能
xtdata模块作为行情数据获取的核心模块,提供了全面的数据服务功能。
- 在历史数据方面,它不仅支持获取各种周期(日线、分钟线、周线等)的K线数据,还能获取分笔成交的tick数据,并且提供了前复权、后复权等多种复权方式。
- 对于实时行情,xtdata提供了两种订阅模式:可以针对单只股票订阅特定周期的数据,也可以订阅全市场的tick数据。此外,它还支持Level2深度行情数据的获取(需要单独开通权限),为高频交易提供了数据基础。
- 在基本面数据方面,xtdata提供了完整的财务数据查询功能,包括资产负债表、利润表、现金流量表等财务报表,以及主要的财务指标数据。同时,它还提供了股票列表、交易日历、除权除息等基础信息的查询接口。
- 对于指数投资者来说,xtdata提供了指数成分股、成分股权重、指数行情等数据的获取功能。在板块数据方面,支持查询行业分类、概念板块、地域板块等多维度的分类数据。
- ETF基金投资者可以通过xtdata获取ETF的申赎清单、成分股信息和净值数据。对于期货和期权交易者,xtdata也提供了主力合约、期权链、商品期权等衍生品数据的查询功能。
二、基本面数据获取的运行逻辑与演示案例
在XtQuant中,获取基本面数据主要涉及到三个核心函数:
- download_financial_data() - 下载单只股票的财务数据
- download_financial_data2() - 批量下载多只股票的财务数据
- get_financial_data() - 获取已下载的财务数据
与行情数据类似,基本面数据的获取也需要先下载数据到本地,然后才能查询。不同的是,基本面数据是按照报表期进行组织的,包含了资产负债表、利润表、现金流量表等多个报表。
1. 基本的财务数据获取流程
下面通过一个简单的案例来演示这个过程:
from xtquant import xtdata
# 1.下载单只股票的财务数据
xtdata.download_financial_data(
stock_list=["000001.SZ"],
table_list=["Balance", "Income"] # 下载资产负债表和利润表
)
# 2.查询财务数据
data = xtdata.get_financial_data(
stock_list=["000001.SZ"],
table_list=["Balance", "Income"],
start_time="20230101",