自然语言处理--PCA将三维“马“向量降为二维

三维马的二维投影:

import pandas as pd
from sklearn.decomposition import PCA
import seaborn
from matplotlib import pyplot as plt
from nlpia.data.loaders import get_data

pd.set_option('display.max_columns', 6)
# 点云数据
df = get_data('pointcloud').sample(1000)
pca = PCA(n_components=2)
# 将三维点云缩减为二维投影,以便在二维散点图中显示
df2d = pd.DataFrame(pca.fit_transform(df), columns=list('xy'))
df2d.plot(kind='scatter', x='x', y='y')
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值