2024深度学习发论文&模型涨点之——小目标检测
小目标检测是计算机视觉领域的关键研究方向,它关注于在图像中识别尺寸较小、分辨率较低的目标。这类目标由于其尺寸小、特征不明显,导致检测难度大,尤其是在提取特征和精确定位方面。小目标的定义通常基于目标与图像的相对比例或目标的绝对像素大小,不同应用场景下有不同的标准。
技术难点主要集中在小目标特征提取困难、定位精度要求高、样本不均衡以及小目标聚集等方面。这些挑战使得小目标检测在实际应用中面临诸多限制。为了解决这些问题,研究者们提出了多种算法,包括基于深度学习的检测方法,以提高小目标的检测性能。
小目标检测技术在多个领域有着广泛的应用,如自动驾驶、智慧医疗、缺陷检测等。随着技术的进步,小目标检测的性能不断提升,为这些领域的发展提供了强有力的技术支持。
小编整理了一些小目标检测【论文】合集,以下放出部分,全部论文PDF版皆可领取。
需要的同学
回复“小目标检测”即可全部领取
论文精选
论文1:
Occupancy-MAE: Self-supervised Pre-training Large-scale LiDAR Point Clouds with Masked Occupancy Autoencoders
占用-MAE:自监督预训练大规模激光雷达点云的遮蔽占用自编码器
方法
-
占用-MAE框架:提出了一个自监督遮蔽占用自编码器框架,用于预训练大规模户外激光雷达点云。
-
3D稀疏卷积编码器:使用3D稀疏卷积作为编码器网络,仅从被遮蔽的、被占用的体素中聚合信息。
-
轻量级3D解码器:由3D反卷积层组成,最后一层输出每个体素包含点的概率。
-
重建占用目标:通过二元占用分类损失来预训练网络,鼓励编码器网络对整个对象形状进行体素感知。
创新点
-
占用-MAE框架:通过预测整个3D环境的遮蔽占用结构,迫使网络学习鲁棒特征以准确推断遮蔽点,减少了对标注3D训练数据的依赖,例如在KITTI数据集上车辆检测所需的标注数据减少了一半。
-
范围感知随机遮蔽策略:提出了一种范围感知随机遮蔽策略,根据体素到激光雷达的距离调整遮蔽比例,随着距离的增加遮蔽比例降低,改善了远距离物体的预训练性能。
-
3D占用预测预文本任务:通过从少量可见体素中恢复3D场景的遮蔽占用分布,网络被迫提取高级语义信息,提高了小物体检测的AP约2%,并在3D语义分割任务中提高了约2%的mIoU。
-
性能提升:在多目标跟踪任务中,占用-MAE通过提高AMOTA和AMOTP约1%,增强了从零开始的训练。
论文2:
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small Object Detection
QueryDet:级联稀疏查询以加速高分辨率小目标检测
方法
-
级联稀疏查询(CSQ):提出了一种新颖的查询机制,用于加速基于特征金字塔的目标检测器的推理速度。
-
低分辨率特征预测:首先在低分辨率特征图上预测小目标的粗略位置。
-
高分辨率特征稀疏引导:使用高分辨率特征图稀疏引导这些粗略位置来计算精确的检测结果。
创新点
-
级联稀疏查询(CSQ):通过在低分辨率特征图上预测小目标的粗略位置,并在高分辨率特征图上稀疏地引导这些位置,提高了高分辨率推理速度3.0倍,同时提高了小目标的检测mAP。
-
高分辨率加速:在COCO数据集上,提出的方法提高了检测mAP 1.0和mAPsmall 2.0,而在VisDrone数据集上,创造了新的最先进水平,平均高分辨率加速2.3倍。
论文3:
Slicing Aided Hyper Inference and Fine-tuning for Small Object Detection
切片辅助的超推理和微调以进行小目标检测
方法
-
切片辅助推理(SAHI):提出了一个通用的切片辅助推理和微调管道,用于小目标检测。
-
切片辅助微调(SF):通过从图像中提取切片并调整大小来增强数据集,以便在微调期间使小目标的相对大小变大。
创新点
-
切片辅助推理(SAHI):通过将输入图像分割成重叠的切片,并在这些切片的较大调整大小版本上生成预测结果,然后将这些预测结果转换回原始图像坐标,提高了对象检测的平均精度(AP)6.8%、5.1%和5.3%。
-
切片辅助微调(SF):通过微调预训练模型,进一步提高了检测精度,累积提高了12.7%、13.4%和14.5%的AP。
性能提升:在VisDrone和xView数据集上,提出的技术通过切片辅助推理和微调,显著提高了小目标的检测精度。
论文4:
Small Object Detection via Pixel Level Balancing With Applications to Blood Cell Detection
通过像素级平衡进行小目标检测及其在血细胞检测中的应用
方法
-
像素级平衡(PLB):提出了一种考虑检测框中包含的像素数量作为影响因素来表征被检测对象大小的方法,并动态调整不同大小物体的训练损失权重。
创新点
-
像素级平衡(PLB):通过动态设置不同大小物体的损失权重,改善了小目标检测的准确性,特别是在血细胞检测实验中表现出色。
-
性能提升:在Pascal VOC2007数据集上,使用PLB方法可以显著提高小目标的检测精度,例如,PLB1C方法将小目标的AP从小目标的18.3%提高到19.3%,提高了5.46%。
-
应用扩展:该方法不仅在自然图像检测中有效,还可以应用于医疗图像检测,如血细胞检测,提高了小目标检测的商业价值和应用前景。
小编整理了小目标检测论文代码合集
需要的同学
回复“小目标检测”即可全部领取