图像分割标注工具用于在图像上创建分割标注数据,这些数据通常用于训练和评估图像分割模型。以下是一些常用的图像分割标注工具,适合不同需求和使用场景:
1. LabelMe
- 描述:一个开源的图像标注工具,支持多种标注类型,包括多边形标注、矩形标注等。
- 特点:支持标注分割区域,用户界面友好,可以与深度学习框架集成。
- 链接:LabelMe
2. Labelbox
- 描述:一个商业化的标注工具,提供易用的界面和强大的协作功能。
- 特点:支持图像分割、目标检测等多种标注任务,集成了自动标注和数据管理功能。
- 链接:Labelbox
3. VGG Image Annotator (VIA)
- 描述:由视觉几何组(VGG)开发的开源标注工具。
- 特点:简单易用,支持多边形、矩形等标注方式,适合快速标注。
- 链接:VGG Image Annotator (VIA)
4. COCO Annotator
- 描述:一个开源的标注工具,专注于生成符合 COCO 数据集格式的标注。
- 特点:支持图像分割、目标检测标注,用户界面直观。
- 链接:COCO Annotator
5. Segmentation Toolkit (LabelImg)
- 描述:一个轻量级的图像标注工具,特别适用于图像分割任务。
- 特点:简单易用,支持多边形标注,并能够生成 COCO 和 Pascal VOC 格式的标注。
- 链接:LabelImg
6. Supervisely
- 描述:一个功能全面的标注平台,支持图像分割、目标检测、标注管理等。
- 特点:提供强大的数据管理、团队协作功能,支持模型训练和评估。
- 链接:Supervisely
7. RectLabel
- 描述:一个适用于 macOS 的图像标注工具,支持多种标注类型,包括图像分割。
- 特点:支持图像分割、目标检测,提供直观的标注界面。
- 链接:RectLabel
8. Annotorious
- 描述:一个基于 Web 的标注工具,适合轻量级标注任务。
- 特点:支持多边形标注,适合图像分割和区域标注任务。
- 链接:Annotorious
9. MakeSense
- 描述:一个免费的 Web 标注工具,支持图像分割和目标检测。
- 特点:无需注册即可使用,支持多种导出格式。
- 链接:MakeSense
10. Scalable Labeling Tool (SLT)
- 描述:一个基于 Web 的工具,支持大规模图像标注任务。
- 特点:适用于大数据集的标注,支持分割、标记和注释功能。
- 链接:SLT
这些工具各有特点,用户可以根据具体需求(如标注类型、团队协作、数据管理等)选择合适的工具进行图像分割标注。