在计算机视觉和深度学习项目中,标注工具用于为数据集中的图像或视频进行人工标注。不同的任务,如物体检测、图像分割、关键点检测等,可能需要不同类型的标注工具。以下是一些常用的标注工具,涵盖了图像分类、物体检测、分割、关键点标注等任务:
1. LabelImg
- 用途:主要用于物体检测任务(bounding box标注)。
- 特点:简单易用,支持VOC和YOLO格式。
- 功能:
- 可以快速创建边界框(bounding box)。
- 支持多种标注格式(如XML, YOLO text格式)。
- 适合快速标注图像中的物体。
- 适用场景:适用于PASCAL VOC、YOLO等任务。
- 官网/开源:GitHub - LabelImg
2. Labelme
- 用途:支持多种任务,包括物体检测、分割任务(像素级标注)和关键点标注。
- 特点:功能强大,支持标注多种类型的物体。
- 功能:
- 多边形标注:适用于图像分割(可以手动圈定物体边界)。
- 支持各种任务(如图像分类、分割、关键点标注)。
- 提供JSON格式的标注输出,方便与其他工具或框架集成。
- 适用场景:适用于COCO格式的标注任务。
- 官网/开源:GitHub - Labelme
3. VGG Image Annotator (VIA)
- 用途:用于标注图像、视频的边界框、点、线等。
- 特点:Web端应用,无需安装。
- 功能:
- 支持多种标注方式(点、边界框、分割、标线)。
- 轻量级、简单,适合快速标注。
- 支持自定义标签。
- 适用场景:适用于图像分类、物体检测和分割任务。
- 官网/开源:VIA
4. RectLabel
- 用途:Mac专用工具,适用于物体检测、图像分割等任务。
- 特点:专为Mac用户设计,支持YOLO和COCO格式。
- 功能:
- 支持物体检测、分割标注。
- 自带工具支持批量处理。
- 图形界面友好,支持导出多种格式。
- 适用场景:适用于YOLO、COCO等任务。
- 官网:RectLabel
5. CVAT (Computer Vision Annotation Tool)
- 用途:适用于图像和视频标注,支持物体检测、分割、关键点等多种任务。
- 特点:开源工具,支持团队协作标注。
- 功能:
- 支持物体检测、实例分割、关键点标注等。
- 支持团队协作,多个标注者可以共同参与。
- 支持导出为COCO、PASCAL VOC、YOLO等格式。
- 适用场景:适用于大规模项目、视频标注及复杂的标注任务。
- 官网/开源:CVAT GitHub
6. SuperAnnotate
- 用途:专业的标注平台,支持物体检测、图像分割、关键点检测等。
- 特点:提供企业级的标注解决方案,支持团队协作和自动化标注。
- 功能:
- 高度自定义的标注工具,支持自动化标注(半自动标注)。
- 支持团队协作、任务分配。
- 提供标注质量控制和审查功能。
- 适用场景:适用于企业级标注需求、数据集大、任务复杂的场景。
- 官网:SuperAnnotate
7. MakeSense.ai
- 用途:Web端的标注工具,适用于物体检测、图像分割等。
- 特点:简单、易用,支持多种标注格式。
- 功能:
- 支持物体检测标注(bounding box)。
- 支持导出多种格式(COCO、YOLO、Pascal VOC等)。
- 轻量级、无需安装,适合快速标注。
- 适用场景:适合小规模项目,尤其是物体检测任务。
- 官网:MakeSense.ai
8. Amazon SageMaker Ground Truth
- 用途:用于大规模标注任务的云端服务。
- 特点:结合人工和自动标注,适合处理大规模数据。
- 功能:
- 支持物体检测、分割和分类任务。
- 可以结合人工标注和自动标注(机器学习模型辅助标注)。
- 集成于AWS,适合与AWS生态系统中的其他服务搭配使用。
- 适用场景:适合大规模数据集标注,尤其是需要与AWS基础设施结合的场景。
- 官网:Amazon SageMaker Ground Truth
这些工具的选择取决于标注任务的复杂性、数据集的大小以及团队的工作需求。对于个人或小团队来说,像 LabelImg、Labelme 和 VIA 这样的免费工具非常适合。而对于大规模项目和企业需求,像 CVAT 和 Amazon SageMaker Ground Truth 这样的专业工具会更具优势。