CV-标注工具

在计算机视觉和深度学习项目中,标注工具用于为数据集中的图像或视频进行人工标注。不同的任务,如物体检测、图像分割、关键点检测等,可能需要不同类型的标注工具。以下是一些常用的标注工具,涵盖了图像分类、物体检测、分割、关键点标注等任务:

1. LabelImg

  • 用途:主要用于物体检测任务(bounding box标注)。
  • 特点:简单易用,支持VOC和YOLO格式。
  • 功能
    • 可以快速创建边界框(bounding box)。
    • 支持多种标注格式(如XML, YOLO text格式)。
    • 适合快速标注图像中的物体。
  • 适用场景:适用于PASCAL VOC、YOLO等任务。
  • 官网/开源GitHub - LabelImg

2. Labelme

  • 用途:支持多种任务,包括物体检测、分割任务(像素级标注)和关键点标注。
  • 特点:功能强大,支持标注多种类型的物体。
  • 功能
    • 多边形标注:适用于图像分割(可以手动圈定物体边界)。
    • 支持各种任务(如图像分类、分割、关键点标注)。
    • 提供JSON格式的标注输出,方便与其他工具或框架集成。
  • 适用场景:适用于COCO格式的标注任务。
  • 官网/开源GitHub - Labelme

3. VGG Image Annotator (VIA)

  • 用途:用于标注图像、视频的边界框、点、线等。
  • 特点:Web端应用,无需安装。
  • 功能
    • 支持多种标注方式(点、边界框、分割、标线)。
    • 轻量级、简单,适合快速标注。
    • 支持自定义标签。
  • 适用场景:适用于图像分类、物体检测和分割任务。
  • 官网/开源VIA

4. RectLabel

  • 用途:Mac专用工具,适用于物体检测、图像分割等任务。
  • 特点:专为Mac用户设计,支持YOLO和COCO格式。
  • 功能
    • 支持物体检测、分割标注。
    • 自带工具支持批量处理。
    • 图形界面友好,支持导出多种格式。
  • 适用场景:适用于YOLO、COCO等任务。
  • 官网RectLabel

5. CVAT (Computer Vision Annotation Tool)

  • 用途:适用于图像和视频标注,支持物体检测、分割、关键点等多种任务。
  • 特点:开源工具,支持团队协作标注。
  • 功能
    • 支持物体检测、实例分割、关键点标注等。
    • 支持团队协作,多个标注者可以共同参与。
    • 支持导出为COCO、PASCAL VOC、YOLO等格式。
  • 适用场景:适用于大规模项目、视频标注及复杂的标注任务。
  • 官网/开源CVAT GitHub

6. SuperAnnotate

  • 用途:专业的标注平台,支持物体检测、图像分割、关键点检测等。
  • 特点:提供企业级的标注解决方案,支持团队协作和自动化标注。
  • 功能
    • 高度自定义的标注工具,支持自动化标注(半自动标注)。
    • 支持团队协作、任务分配。
    • 提供标注质量控制和审查功能。
  • 适用场景:适用于企业级标注需求、数据集大、任务复杂的场景。
  • 官网SuperAnnotate

7. MakeSense.ai

  • 用途:Web端的标注工具,适用于物体检测、图像分割等。
  • 特点:简单、易用,支持多种标注格式。
  • 功能
    • 支持物体检测标注(bounding box)。
    • 支持导出多种格式(COCO、YOLO、Pascal VOC等)。
    • 轻量级、无需安装,适合快速标注。
  • 适用场景:适合小规模项目,尤其是物体检测任务。
  • 官网MakeSense.ai

8. Amazon SageMaker Ground Truth

  • 用途:用于大规模标注任务的云端服务。
  • 特点:结合人工和自动标注,适合处理大规模数据。
  • 功能
    • 支持物体检测、分割和分类任务。
    • 可以结合人工标注和自动标注(机器学习模型辅助标注)。
    • 集成于AWS,适合与AWS生态系统中的其他服务搭配使用。
  • 适用场景:适合大规模数据集标注,尤其是需要与AWS基础设施结合的场景。
  • 官网Amazon SageMaker Ground Truth

这些工具的选择取决于标注任务的复杂性、数据集的大小以及团队的工作需求。对于个人或小团队来说,像 LabelImgLabelmeVIA 这样的免费工具非常适合。而对于大规模项目和企业需求,像 CVATAmazon SageMaker Ground Truth 这样的专业工具会更具优势。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值