数据标注工具CVAT教程

                                          数据标注工具CVAT教程

目录

0. CVAT链接

1. 标注图(以旋转框为例)导出可视化效果

2. docker-容器安装cvat

3. cvat标注教程

3.1 支持的类型

3.2 标注流程

4. 类似paddle-OCR文本检测-文本识别 标注流程


0. CVAT链接

cvat:https://github.com/openvinotoolkit/cvat

1. 标注图(以旋转框为例)导出可视化效果


                '''
                基于coco格式进行可视化
                按照segmentation的点进行可视化,按照bbox的点进行可视化
                前者为分割,后者为最小水平框,若求最小外接矩形,采用cv2即可
                并且可以知道标注顺序
                ===========================================
                注意:
                CVAT最新版本有些bug,对于yolo格式目标检测没有问题,但是旋转目标检测
                需要导入or导入按照cvat images1.*格式!!!
                ===========================================
                '''

2. docker-容器安装cvat

TODO

3. cvat标注教程

3.1 支持的类型

【1】图像分类-多属性;【2】2D-3D目标检测;【3】语义分割-实例分割;【4】旋转目标检测;【5】文字检测+文字识别

3.2 标注流程

假设你并不熟悉cvat的标注流程,这里以图像2D目标检测为例

标注快捷键:N-自动画框-再按1次结束,DF前后移动1张,双击1:1,。。。

【1】测试步骤:不管你有无预标注,先创建1个project,并且按照图像的1-2-3-4-5等步骤创建;

【2】测试步骤:在创建task前,将2-3张图像压缩成1个zip文件,然后创建task,6-7-8-9,其中步骤9为每个间隔包含多少张图像,上传完成

【3】测试步骤:以2D目标检测为例,选择水平矩形框标注,然后保存,再按照以yolo的格式导出,那么就可以知道cvat支持的标注格式要求,你按照对应格式准备数据即可!按照11-12步骤导出即可

【4】测试步骤:若你有预标注,则参考对应格式准备即可,然后上传后,再执行1次13步骤,预标注需要2次上传,都是1个zip即可(图像+标注文件)

以上步骤你懂了,其它的,步骤类似;

4. 类似paddle-OCR文本检测-文本识别 标注流程

https://github.com/openvinotoolkit/cvat/blob/develop/cvat/apps/documentation/user_guide.md

CVAT标注工具是一款开源的图像和视频标注工具,用于辅助机器学习项目中的物体检测和跟踪任务。以下是CVAT标注工具的具体使用教程: 1. 登录和创建项目:首先,你需要在CVAT平台上创建一个账号,并登录你的账号。然后,点击“创建项目”按钮,填写项目的基本信息,如项目名称、描述等。 2. 导入数据:在项目页面,你可以选择导入需要标注的图像或视频数据。CVAT支持常见的图像和视频格式,如JPEG、PNG和MP4。导入数据后,你可以对数据进行预览和编辑。 3. 创建标注任务:在项目页面的左侧菜单栏中,选择“任务”选项,然后点击“创建任务”按钮。在创建任务页面,选择标注类型,如对象检测、对象跟踪等。你也可以设置任务的名称和描述。 4. 标注数据:进入标注任务后,你可以开始对数据进行标注。标注工具界面包括一个显示画面的窗口和各种标注工具,如绘制矩形、多边形等。根据任务要求,使用相应的工具在每个帧上标注物体。 5. 标注参数调整:CVAT还提供了一些标注参数的调整选项,如标签样式、可见性和透明度等。你可以根据项目需求来微调这些参数。 6. 标注质量控制:CVAT还提供了一些质量控制工具,如标注一致性检查和错误修复工具。这些工具可以帮助你确保标注结果的质量和准确性。 7. 导出标注结果:当标注任务完成后,你可以导出标注结果。CVAT支持将标注结果导出为常见格式,如XML和JSON。你还可以选择导出整个数据集或只导出选定的部分。 总结:CVAT标注工具简单易用,提供了丰富的标注工具和参数调整选项,帮助用户完成高质量的标注任务。通过按照以上步骤进行操作,你可以快速上手CVAT,并为机器学习项目提供准确的标注数据。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值