100 Best GitHub: Deep Learning

深学习资源与项目精选
本文档汇总了来自GitHub的精选深学习资源与项目,涵盖了从教程到实践应用的广泛内容,包括各种语言实现的神经网络模型、工具箱及开源框架等。

githubDeep-Learning415

Deep Learning

Notes:

This 100 item list represents a search of github for “deep-learning”, Apr 2015.  As of 2015, this is the most popular webpage on the Meta-Guide.com website.

Resources:

References:

See also:

100 Best Deep Belief Network Videos | 100 Best Deep Learning Videos | 100 Best DeepMind Videos | 100 Best MATLAB Videos | Deep Belief Network & Dialog Systems | Deep Learning & Dialog Systems 2014 | Deep Reasoning Systems | DeepDive | DNLP (Deep Natural Language Processing) | MATLAB & Dialog Systems 2011 |MATLAB & Dialog Systems 2012 | MATLAB & Dialog Systems 2013 | MATLAB & Dialog Systems 2014 | Skipgram & Deep Learning 2014 | Word2vec Neural Network


“deep-learning” [100x Apr 2015]

  • BVLC/caffe .. Caffe: a fast open framework for deep learning.
  • dmlc/cxxnet .. fast, concise, distributed deep learning framework
  • gonzojive/deep-learning .. Deep learning algorithms: A sparse autoencoder (and someday more algorithms), implemented in Common Lisp.
  • ty4z2008/Qix .. Node.Js?Golang?Machine Learning?PostgreSQL?Deep Learning
  • zewemli/DeepLearning .. An OpenCL implementation of Deep Belief Networks and Restricted Boltzmann Machines
  • nyanp/tiny-cnn .. deep learning(convolutional neural networks) in C++11/TBB
  • amaas/stanford_dl_ex .. Programming exercises for the Stanford Unsupervised Feature Learning and Deep Learning Tutorial
  • karpathy/convnetjs .. Deep Learning in Javascript. Train Convolutional Neural Networks (or ordinary ones) in your browser.
  • nyanp/tiny-cnn .. deep learning(convolutional neural networks) in C++11/TBB
  • rasmusbergpalm/DeepLearnToolbox .. Matlab/Octave toolbox for deep learning. Includes Deep Belief Nets, Stacked Autoencoders, Convolutional Neural Nets, Convolutional Autoencoders and vanilla Neural Nets. Each method has examples to get you started.
  • jdeng/rbm-mnist .. C++ 11 implementation of Geoff Hinton’s Deep Learning matlab code
  • priyaank/deep-learning .. Deep Learning Reading List of some of the materials i found on the web for Deep Learning beginners.
  • SnippyHolloW/DL4H .. Deep learning for hackers: a hands-on approach to machine learning and deep learning.
  • erikbern/deep-pink .. Deep Pink is a chess AI that learns to play chess using deep learning.
  • nicholas-leonard/dp .. A deep learning library for streamlining research and development using the Torch7 distribution.
  • baojie/senna .. a fork of Ronan Collobert’s senna deep learning based NLP tools
  • primaryobjects/deep-learning .. Simple example of using the Accord .NET C# library to implement a deep-learning neural network (deep belief network) with machine learning. Solves XOR and an ASCII digit dataset.
  • yajiemiao/pdnn .. PDNN: A Python Toolkit for Deep Learning. http://www.cs.cmu.edu/~ymiao/pdnntk.html
As an AI language model, I can suggest the following steps to learn deep learning: 1. Learn the basics of machine learning: Before diving into deep learning, it is essential to understand the basics of machine learning, including supervised and unsupervised learning, regression, clustering, and classification. 2. Learn programming languages: To work with deep learning, one needs to have a strong foundation in programming languages such as Python and R, as most of the deep learning libraries are written in these languages. 3. Understand the mathematics behind deep learning: Deep learning involves a lot of math, including linear algebra, calculus, and probability. Understanding these concepts will help you better understand the algorithms used in deep learning. 4. Choose a deep learning framework: Popular deep learning frameworks include Tensorflow, Keras, PyTorch, and Caffe. Choose one and learn it. 5. Practice with datasets: Work with datasets to understand how deep learning works in practice. Kaggle is a great platform to get started with real-world datasets. 6. Read research papers: Read research papers to stay up-to-date with the latest advancements in deep learning. 7. Join communities: Join online communities such as Reddit, Discord, or GitHub to connect with other deep learning enthusiasts and learn from them. 8. Build projects: Building projects is the best way to learn deep learning. Start with simple projects and gradually move on to more complex ones. Remember, deep learning is a vast field, and it takes time and effort to master it. Keep practicing, and you will get there.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值