联邦学习开源框架方案选型

本文对比了多个联邦学习开源框架,包括FATE、PySyft、Rosetta、PaddleFL、FedLearner、TFF、FedML和Flower。每个框架的特点、所属单位、GitHub链接及主要功能被详细阐述,帮助开发者了解它们的适用场景和优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无知者:【联邦学习开源框架】FedLab - 加速FL算法验证

联邦学习开源框架FedLab相关

FATE

单位:微众银行

github: https://github.com/FederatedAI/FATE star:3.2k

docs:https://github.com/FederatedAI/FATE/blob/master/doc/develop_guide_zh.rst

概述:FATE (Federated AI Technology Enabler) 是微众银行AI部门发起的开源项目,为联邦学习生态系统提供了可靠的安全计算框架。FATE项目使用多方安全计算 (MPC) 以及同态加密 (HE) 技术构建底层安全计算协议,以此支持不同种类的机器学习的安全计算,包括逻辑回归、基于树的算法、深度学习和迁移学习等。

功能:全面,同时覆盖横向、纵向、迁移联邦学习,包含联邦学习的整体流程;实现了样本安全匹配,样本切分(1.5版本),特征处理和筛选、LR/XGB/DNN等常用算法,模型评估与评分卡,模型预测(serving),联邦推荐等。

易用:一般;虽然文档很丰富,但是难抵配置多;cluster模式下配置很多,各种端口,;又因为期望兼容多种后端存储和计算,导致依赖较多,系统整体比较重,前期部署较困难;而且python、java、scala等多种语言混合在同一项目,上手相对不容易,排查问题更是头疼。不过,使用docker化部署会比本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值