数字孪生论文阅读笔记【1.1】

[1]刘劲松. 高档数控机床数字孪生关键技术研究与应用[D].中国科学院大学(中国科学院沈阳计算技术研究所),2022.DOI:10.27587/d.cnki.gksjs.2022.000005.

Motivation

  1. 不同数控机床对外信息接口不同,导致信息孤岛
  2. 机床部件诊断困难,造成资源浪费
  3. 维护资源不能有效整合
  4. 机床故障时难以获取生产计划,从而优化生产决策

数据感知是指对设备数据的有效采集与传输,通过运用传感器、控制系统等数据感知设备以及工业现场总线、Modbus等通信技术实现对设备状态的全方面感知。

关键技术

  1. 高档数控机床数据感知方法。基于OPC UA的数据感知方法
  2. 基于CNN和故障知识图谱的故障诊断方法
  3. 高档数控机床数字孪生生产调度决策方法

OPC UA技术:OPC UA协议通过将工业设备中的数据抽象为地址空间中面向对象的规范化信息模型,实现工业系统中异构设备间的互联互通及予以操作,满足多源异构复杂数据的交互需求,为数字孪生提供有效数据支撑。能提供具有语义信息的数据模型。

OPC UA地址空间构建方法:根据OPC UA地址空间的构建规则,使用XML文件对数控机床信息模型进行描述,将对象信息描述为对象节点,将属性类型描述为数据节点,将方法信息定义为方法节点,并采用引用方式将其关联,构建OPC UA地址空间。之后,通过OPC UA SDK包,将信息模型的XML文件映射至服务器模型中面向对象的类文件中,构建OPC UA服务器中该数控机床的地址空间。

基于CNN和知识图谱的高级数控机床故障诊断方法研究

首先,将数控机床运行状态数据传递到深度学习算法模型中进行故障诊断。其次根据故障诊断结果,通过构建的故障知识图谱查询和推理得到故障相关维护知识,如故障原因、故障影响、故障维护方式、预计维护时间等。最后根据得到的故障相关知识安排维护人员对故障进行合理维护。

卷积神经网络

是一种具备卷积计算并包含深度结构的前馈神经网络,包含输入层(Input Layer)、隐藏层(Hidden Layer)和输出层(Output Layer)。隐藏层主要由卷积层(Convolutional Layer)、激活函数(Activation Function)、池化层(Pooling Layer)和全连接层(Fully Connected Layer)等组成。

卷积层

目的是使用过滤器(Filter)对输入数据进行特征提取,输入的数据或特征和Filter中的卷积核(Convolutional Kernels)进行卷积计算,得到一组线性相关值。每个Filter中包含若干个卷积核,每个卷积核的权重参数通过反向传播算法训练优化得到。
卷积计算流程:在输入数据的某个位置上覆盖卷积核,将卷积核中的值与数据中对应的值相乘,将所有乘积结果相加,最终得到该位置的特征值,根据卷积核的大小以及步长,重复以上操作,直到遍历完所有位置后停止,得到的所有特征值构成特征图(Feature Map)。
如下图,Filter中卷积核数量为1,大小为2×2,步长为(2,2),卷积核与输入矩阵相应区域神经元对应的值相乘并将所有乘积累加,从而得到输出特征图中的第一个值,然后移动2个步长重复此操作,得到最终的特征图。

激活函数

激活函数对卷积操作之后的值进行非线性转换,将当前线性不可分的特征空间映射到另一空间,从而增加神经网络的非线性切分能力,提高卷积神经网络解决各类复杂问题的能力。神经网络中常用的激活函数有Sigmoid函数、Than函数和ReLU函数。

Sigmoid函数

函数曲线在值域内单调连续且平滑,易于求导,但是计算量大,反向传播时容易出现梯度消失的问题。Sigmoid函数将卷积后的值映射到(0,1)区间中,常用于二分类问题。

\begin{array}{c} \operatorname{sig}(x)=\frac{1}{1+e^{-x}} \\ \\\operatorname{sig}^{\prime}(x)=\operatorname{sig}(x)(1-\operatorname{sig}(x)) \end{array}

Tanh函数

收敛速度比Sigmoid函数快,但是也存在梯度消失的问题。Tanh函数将卷积后的值映射到(-1,1)区间中。

\begin{array}{c} \tanh (x)=\frac{1-e^{-2 x}}{1+e^{-2 x}} \\ \\ \tanh ^{\prime}(x)=-(\tanh (x))^{2} \end{array}

ReLU

ReLU收敛速度比上述两种激活函数更快,计算量也更小,在训练神经网络时效率更高。ReLU在值小于0时能够保持梯度不衰减,从而有效地缓解梯度消失的问题。但是随着训练的时间的增长,可能会出现神经元死亡、权值无法更新的问题。ReLU函数将卷积后的值转换到[0,+∞)区间中,值大于0的保持不变,其它的值转换为0。 

\begin{array}{c} f(x)=\left\{\begin{array}{ll} 0, & x \leq 0 \\ x, & \mathrm{x}>0 \end{array}\right. \\ \\\\f(x)=\left\{\begin{array}{ll} 0, & x<0 \\ 1, & \mathrm{x}>0 \\ \text { undefined, }, & \mathrm{x}=0 \end{array}\right. \end{array}

池化层

池化层也被称为下采样层或欠采样层,主要作用是对多维特征进行降维,摒弃冗余特征,减少数据量以及神经网络模型参数的数量,缓解过拟合的问题,同时提高神经网络模型的容错能力。池化函数中最大值池化(Max Pooling)和均值池化(Average Pooling)如下:

\begin{array}{r} p_{i, j}^{l}=\max _{(j-1) W+1 \leq t \leq j W}\left\{a_{i, t}^{l}\right\} \\\\ p_{i, j}^{l}=\frac{1}{W} \sum_{t=(\mathrm{j}-1) W+1}^{j W} a_{i, t}^{l} \end{array}

其中,a_{i, t}^{l}表示池化操作的第1层中特征图的局部值,W为pool核的宽度。
最大值池化和均值池化计算如下图。输入为4×4特征图,pool核窗口大小为2×2,步长为(2,2),最大值池化是取pool核覆盖区域内所有神经元中的最大值,均值池化是取该区域内所有神经元的平均值。Max Pooling需要记录最大值所在的位置,在反向传播时需要把梯度传递给最大值所对应的位置。

全连接层

经过若干个卷积和池化操作后,与全连接层相连,全连接层的每个神经元都与上一层所有神经元相连,因此导致全连接层的参数数量较多。全连接层的目的是对卷积层和池化层提取的特征进行非线
性整合,从而起到分类的作用。卷积层、激活函数、池化层等的操作是将原始数据映射到特征空间,而全连接层通过学习将其映射到样本空间。

流程如上图所示,将最后一次池化操作的输出特征图展开为一个一维向量,这个向量中存放了前几层卷积池化操作后获得的所有特征,该向量与全连接层相连,并通过激活函数增加模型的非线性表达能力,最终传递到输出层,经过Softmax函数分类,函数如下,其中zj指第j个输出神经元的对数,N表示最后一层中神经元的总量。

\mathrm{q}_{\mathrm{j}}=\operatorname{Softmax}\left(z_{\mathrm{j}}\right)=\frac{e^{\mathrm{z}_{\mathrm{j}}}}{\sum_{\mathrm{n}=1}^{\mathrm{N}} e^{\mathrm{z}_{\mathrm{j}}}}

本文采用交叉熵函数(Cross-entropy Loss Function)作为损失函数(Loss Function),交叉熵函数用来计算每个结果类别的概率。

知识图谱

根据应用领域可将知识图谱分为通用领域知识图谱垂直领域知识图谱。知识图谱构建方式分为自顶向下(top-down)自底向上(bottom-up)以及两者相结合的方式。
自顶向下方式是指先由领域专家梳理顶层概念,总结归纳相应的实体和关系构建领域本体模型,定义数据模式,再将实体加入到知识库中。利用已有的结构化知识库作为基础,常用于垂直领域知识图谱的构建
自底向上方式是指借助一定的方法和技术手段,从开放数据中自动抽取出实体及关系,从而构建顶层的本体模型。受限于算法性能,会导致准确性较差,因此往往用于构建通用领域知识图谱。
垂直领域知识图谱也常采用混合方式构建,先由领域专家总结归纳领域内概念、属性及概念之间的关系,构建顶层本体模型和数据模型,然后基于本体模型,对领域内结构化数据、半结构化数据和非结构化数据进行知识抽取,通过自定义映射规则形成最终知识图谱。

自顶向下方式

过程如图。

  1. 本体构建阶段。领域专家从结构化、半结构化和非结构化数据中提取出本领域相关术语、概念和关系,建立领域本体,并在此基础上构建一系列推理规则以进行隐含知识的自动挖掘。
  2. 知识映射阶段。通过自定义的映射规则将数据记录中抽取的实体和关系映射到本体模型中,最终形成知识图谱。

自底向上方式

构建过程如下图。采用半自动化或自动化技术从原始数据中抽取出实体(概念)、关系以及属性,并将其存入知识图谱中。自底向上构建知识图谱的过程是一个迭代更新的过程,通过知识抽取、知识融合以及知识加工等获取新的知识,实现知识图谱的构建与动态更新。

实体抽取也被称为命名实体识别(Named Entity Recognition,NER),目的在于从半结构化和非结构化数据中抽取出命名实体。实体是构成知识图谱的基本元素之一,NER的完备性、精确性等因素对后续知识获取的效率以及知识图谱构建的质量有很大的影响。NER的方法主要有基于规则的方法、基于统计机器学习的方法以及结合监督学习与规则的方法等。
关系抽取的目的是为了得到实体间的语义关系。数据经过NER后获得一系列离散的命名实体,还需要从数据中抽取到离散实体间的关系,从而将命名实体关联起来形成网状的知识结构。关系抽取方法主要由统计机器学习方法、基于 特征向量或核函数的有监督学习方法以及面向开放域的关系抽取方法等。
属性抽取的目的在于从不同数据源中整合特定实体的属性信息,实现对实体的完整性描述。属性抽取可以看做是关系抽取的一种特殊形式。

知识融合。不同数据集中对同一实体可能存在不同的描述,通过实体消歧、共指消解等对不同数据源的信息进行整合,消除歧义和矛盾,从而形成更加全面的实体信息。知识融合包括实体链接和知识合并两个部分的内容。
实体链接的目标是将抽取得到的实体链接到知识图谱中对应的正确实体上,其中涉及到实体消歧(Entity Disambiguation)和共指消解(Entity Resolution)两个步骤。实体消歧主要解决同名实体不同含义的问题,共指消解用来解决多个指称项对应统一实体的问题。
知识合并将第三方知识图谱或者结构化数据作为知识来源整合进知识图谱中。第三方知识图谱的融合需要考虑数据层和模式层融合的问题。结构化数据的融合可以使用RDB2RDF工具进行转换。

知识加工。通过知识抽取可以从原始数据中抽取到实体、属性以及关系等元素,再经过知识融合,可以获得一系列的基本事实表达,再经过知识加工过程构建知识图谱。知识加工过程包括本体构建、知识推理和质量评估。使用本体对概念以及概念之间的关系进行规范, 本体可采用手动构建或自动构建的方式。
知识推理是从知识图谱中已有知识开始,经过规则推理,找出实体间新的联系,从而对知识图谱进行扩展。包含两大类:基于逻辑的推理和基于图的推理。
质量评估的目的在于保证知识图谱精确性,由于知识抽取技术以及知识融合技术限制,得到的知识可能存在错误,会导致知识图谱检索和推理的误差,因此需要通过质量评估丢弃置信度较低的知识。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值