有监督机器学习算法整体流程概括

数据:(Xi,yi)其中Xi是向量,y是对应的标注结果

直接学习条件概率分布P(Y|X)或决策函数Y=f(x)的方法为判别方法,对应的模型是判别模型。
感知机、k临近法、决策树、逻辑斯帝回归与最大熵模型、支持向量机、提升方法、条件随机场是判别方法。
首先学习联合概率分布P(X,Y),从而求得条件概率分布P(Y|X)的方法是生成方法,对应的模型是生成模型。

朴素贝叶斯法、隐马尔可夫模型是生成方法。

--------------判别模型------------------------------------------------------------------
1 观察数据选择一个模型函数f(x),f(x)中的参数w需要依据数据求解,对于复杂的f(x)其中可以嵌套使用激活函数,
2 激活函数
(1)sigmod
(2)relu
(3)tanh
3 构建目标函数即损失函数J(w),目标函数可能是有约束的,损失函数或者目标函数的类型有多种
(1)最小二乘

(2)hinge loss

http://blog.csdn.net/luo123n/article/details/48878759

(3)交叉觞损失可以理解为负对数似然(数据分布和模型分布的交叉熵)
(4)0-1损失

(5)极大似然(不是损失函数,可以理解为目标函数)

https://blog.csdn.net/fkyyly/article/details/79464111

(6)指数损失(最大熵)

http://blog.csdn.net/shenxiaoming77/article/details/51614601

损失函数的比较(图)

4 对于损失函数可以添加正则化项以简化模型,可看成是一种等式约束
(1)L1
(2)L2
(3)L0

(4)L\inf

https://blog.csdn.net/jinping_shi/article/details/52433975

https://blog.csdn.net/programmer_wei/article/details/52093281

5 对于第三部分的损失函数中包含约束条件的,因此需要将约束利用数学将其放入目标函数中
(1)无约束,直接求导
(2)等式约束,拉格朗日
(3)不等式约束,KKT(凸优化)
      min f(x), 
s.t. g_i(x) <= 0; i =1, ..., n
        h_j(x) = 0; j =1, ..., m
对于含有不等式约束的优化问题,如何求取最优值呢?常用的方法是KKT条件,同样地,把所有的不等式约束、等式约束和目标函数全部写为一个式子L(a, b, x)= f(x) + a*g(x)+b*h(x),
KKT条件是说最优值必须满足以下条件:
1. L(a, b, x)对x求导为零;
2. h(x) =0;
3. a*g(x) = 0;
求取这三个等式之后就能得到候选最优值。其中第三个式子非常有趣,因为g(x)<=0,如果要满足这个等式,必须a=0或者g(x)=0. 这是SVM的很多重要性质的来源,如支持向量的概念。
https://zhuanlan.zhihu.com/p/26514613
6  优化模型f(x),即最小化或者最大化目标函数J(w),求最值的过程就是求解w的过程
(1)单纯形,没用到导数
(2)梯度下降,使用一阶导(迭代更新参数)
(3)牛顿法,使用二阶导

(4)拟牛顿(解决牛顿法求二阶导的计算复杂度过大的问题)

(5)共轭梯度法是介于梯度下降法(最速下降法)与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了梯度下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hessian矩阵并求逆的缺点,

http://blog.csdn.net/lmm6895071/article/details/78329045?locationNum=7&fps=1

(6)svm的smo二次规划(解析解)

https://www.cnblogs.com/shixiangwan/p/7532830.html

http://www.cnblogs.com/maybe2030/p/4751804.html

7 以上的模型函数是一层,如果模型函数是嵌套模型的话如f1(f2(X))需要使用反向传播

---------------------------------------------

生成模型:
1 典型模型
朴素贝叶斯
K近邻(KNN)
混合高斯模型
隐马尔科夫模型(HMM)
贝叶斯网络
Sigmoid Belief Networks
马尔科夫随机场(Markov Random Fields)
深度信念网络(DBN)
2 参数学习
对于有监督的通过统计获取模型中需要的各种参数
EM算法(无监督)
参考:
http://blog.sina.com.cn/s/blog_15b0cd33f0102xiau.html
http://www.cnblogs.com/kemaswill/p/3427422.html
http://blog.csdn.net/u013152718/article/details/42490879
http://blog.csdn.net/xx19901314/article/details/52127189

http://blog.csdn.net/le_zhou/article/details/40502781

http://blog.csdn.net/on2way/article/details/47729419(不等式约束需要同一为小于等于)

--------------------模型评估-------------------------------

1 维数变化(特征选择,特征变化)

降维

升维

2 bias and variance

过拟合欠拟合

3 交叉验证

https://blog.csdn.net/dream_catcher_10/article/details/38714187

展开阅读全文

没有更多推荐了,返回首页